Abstract
We propose a generic and efficient learning framework that is applicable to segment images in which individual objects are mainly discernible by boundary cues. Our approach starts by first hierarchically clustering the image and then explaining the image in terms of a cost-minimal subset of non-overlapping segments. The cost of a segmentation is defined as a weighted sum of features of the selected candidates. This formulation allows us to take into account an extensible set of arbitrary features. The maximally discriminative linear combination of features is learned from training data using a margin-rescaled structured SVM. At the core of our formulation is a novel and simple topology-based structured loss which is a combination of counts and geodesic distance of topological errors (splits, merges, false positives and false negatives) relative to the training set. We demonstrate the generality and accuracy of our approach on three challenging 2D cell segmentation problems, where we improve accuracy compared to the current state of the art.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
sbmrm - Bundle Method for Structured Risk Minimization, https://github.com/funkey/sbmrm .
Arbeláez, P., Maire, M.L., Fowlkes, C., Malik, J.: Contour Detection and Hierarchical Image Segmentation. IEEE PAMI 33(5), 898–916 (2011)
Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to Detect Cells Using Non-overlapping Extremal Regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012)
Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to Detect Partially Overlapping Instances. In: CVPR (2013)
Funke, J., Andres, B., Hamprecht, F.A., Cardona, A., Cook, M.: Efficient Automatic 3D-Reconstruction of Branching Neurons from EM Data. In: CVPR (2012)
Funke, J., Klein, J., Cardona, A., Cook, M.: A Tolerant Edit Distance for Evaluation and Training of Electron Microscopy Reconstruction Algorithms. CoRR (2015)
Liu, F., Xing, F., Yang, L.: Robust Muscle Cell Segmentation using Region Selection with Dynamic Programming. In: ISBI, pp. 1381–1384 (2014)
Liu, T., Jurrus, E., Seyedhossein, M., Ellisman, M., Tasdizen, T.: Watershed Merge Tree Classification for Electron Microscopy Image Segmentation. In: ICPR (2012)
Nunez-Iglesias, J., Kennedy, R., Plaza, S.M., Chakraborty, A., Katz, W.T.: Graph-based Active Learning of Agglomeration (GALA): a Python Library to Segment 2D and 3D Neuroimages. Front. Neuroinform. 8, 34 (2014)
Peng, J.Y., Chen, Y.J., Green, M.D., Sabatinos, S.A., Forsburg, S.L., Hsu, C.N.: PombeX: Robust Cell Segmentation for Fission Yeast Transillumination Images. PLoS One 8(12), e81434 (2013)
Schiegg, M., Heuer, B., Haubold, C., Wolf, S., Koethe, U., Hamprecht, F.A.: Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-Assignment Models. In: ISBI (2015)
Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: ilastik: Interactive Learning and Segmentation Toolkit. In: ISBI (2011)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., Singer, Y.: Large Margin Methods for Structured and Interdependent Output Variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)
Yarkony, J., Zhang, C., Fowlkes, C.C.: Hierarhcical Planar Correlation Clustering for Cell Segmentation. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 492–504. Springer, Heidelberg (2015)
Zhang, C., Yarkony, J., Hamprecht, F.A.: Cell Detection and Segmentation using Correlation Clustering. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 9–16. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Funke, J., Hamprecht, F.A., Zhang, C. (2015). Learning to Segment: Training Hierarchical Segmentation under a Topological Loss. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-24574-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24573-7
Online ISBN: 978-3-319-24574-4
eBook Packages: Computer ScienceComputer Science (R0)