Abstract
Though unsupervised segmentation was a de-facto standard for cardiac MRI segmentation early on, recently cardiac MRI segmentation literature has favored fully supervised techniques such as Dictionary Learning and Atlas-based techniques. But, the benefits of unsupervised techniques e.g., no need for large amount of training data and better potential of handling variability in anatomy and image contrast, is more evident with emerging cardiac MR modalities. For example, CP-BOLD is a new MRI technique that has been shown to detect ischemia without any contrast at stress but also at rest conditions. Although CP-BOLD looks similar to standard CINE, changes in myocardial intensity patterns and shape across cardiac phases, due to the heart’s motion, BOLD effect and artifacts affect the underlying mechanisms of fully supervised segmentation techniques resulting in a significant drop in segmentation accuracy. In this paper, we present a fully unsupervised technique for segmenting myocardium from the background in both standard CINE MR and CP-BOLD MR. We combine appearance with motion information (obtained via Optical Flow) in a dictionary learning framework to sparsely represent important features in a low dimensional space and separate myocardium from background accordingly. Our fully automated method learns background-only models and one class classifier provides myocardial segmentation. The advantages of the proposed technique are demonstrated on a dataset containing CP-BOLD MR and standard CINE MR image sequences acquired in baseline and ischemic condition across 10 canine subjects, where our method outperforms state-of-the-art supervised segmentation techniques in CP-BOLD MR and performs at-par for standard CINE MR.
Keywords
- Unsupervised Segmentation
- Dictionary Learning
- BOLD
- CINE
- MRI
Chapter PDF
References
Aharon, M., et al.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. TSP 54(11), 4311–4322 (2006)
Bai, W., et al.: Multi-atlas segmentation with augmented features for cardiac MR images. MIA, 98–109 (2015)
Glocker, B., et al.: Dense image registration through MRFs and efficient linear programming. MIA 12(6), 731–741 (2008)
Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. MIA 18, 253–271 (2014)
Jolly, M.-P., Xue, H., Grady, L., Guehring, J.: Combining registration and minimum surfaces for the segmentation of the left ventricle in cardiac cine MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 910–918. Springer, Heidelberg (2009)
Lin, X., Cowan, B.R., Young, A.A.: Automated detection of left ventricle in 4D MR images: Experience from a large study. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 728–735. Springer, Heidelberg (2006)
Liu, C.: Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis MIT (2009)
Lynch, M., et al.: Segmentation of the left ventricle of the heart in 3D+t MRI data using an optimised non-rigid temporal model. TMI 27(2), 195–203 (2008)
Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Data-driven feature learning for myocardial segmentation of CP-BOLD MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 189–197. Springer, Heidelberg (2015)
Papazoglou, A., et al.: Fast object segmentation in unconstrained video. In: ICCV (2013)
Pednekar, A., et al.: Automated left ventricular segmentation in cardiac MRI. TBME 53(7), 1425–1428 (2006)
Petitjean, C., et al.: A review of segmentation methods in short axis cardiac MR images. MIA 15(2), 169–184 (2011)
Ramirez, I., et al.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: CVPR, pp. 3501–3508 (2010)
Rusu, C., et al.: Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling. TMI, 1422–1433 (2014)
Scholkopf, B., et al.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Tong, T., et al.: Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. NeuroImage, 11–23 (2013)
Tropp, J., et al.: Signal recovery from random measurements via orthogonal matching pursuit. T. Inf. Theo. 53(12), 4655–4666 (2007)
Tsaftaris, S.A., et al.: A dynamic programming solution to tracking and elastically matching left ventricular walls in cardiac CINE MRI. In: ICIP, pp. 2980–2983 (2008)
Tsaftaris, S.A., et al.: Detecting Myocardial Ischemia at Rest With Cardiac Phase-Resolved Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance. Circ. Card. Imag. 6(2), 311–319 (2013)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Wright, J., et al.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)
Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac Bi-ventricular volumes with regression forests. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 586–593. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A. (2015). Unsupervised Myocardial Segmentation for Cardiac MRI. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-24574-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24573-7
Online ISBN: 978-3-319-24574-4
eBook Packages: Computer ScienceComputer Science (R0)