Advertisement

Leveraging Mid-Level Semantic Boundary Cues for Automated Lymph Node Detection

  • Ari Seff
  • Le Lu
  • Adrian Barbu
  • Holger Roth
  • Hoo-Chang Shin
  • Ronald M. Summers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

Histograms of oriented gradients (HOG) are widely employed image descriptors in modern computer-aided diagnosis systems. Built upon a set of local, robust statistics of low-level image gradients, HOG features are usually computed on raw intensity images. In this paper, we explore a learned image transformation scheme for producing higher-level inputs to HOG. Leveraging semantic object boundary cues, our methods compute data-driven image feature maps via a supervised boundary detector. Compared with the raw image map, boundary cues offer mid-level, more object-specific visual responses that can be suited for subsequent HOG encoding. We validate integrations of several image transformation maps with an application of computer-aided detection of lymph nodes on thoracoabdominal CT images. Our experiments demonstrate that semantic boundary cues based HOG descriptors complement and enrich the raw intensity alone. We observe an overall system with substantially improved results (~78% versus 60% recall at 3 FP/volume for two target regions). The proposed system also moderately outperforms the state-of-the-art deep convolutional neural network (CNN) system in the mediastinum region, without relying on data augmentation and requiring significantly fewer training samples.

Keywords

Random Forest Convolutional Neural Network Contour Detection Compute Tomography Intensity Deep Convolutional Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbu, A., Suehling, M., Xu, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of lymph nodes from CT data. IEEE Trans. Med. Imaging 31(2), 240–250 (2012)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  4. 4.
    Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proc. BMVC, pp. 1–11 (2009). doi:10.5244/C.23.91Google Scholar
  5. 5.
    Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV, pp. 1841–1848. IEEE (2013)Google Scholar
  6. 6.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)zbMATHGoogle Scholar
  7. 7.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. on Pat. Ana. and Mach. Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  8. 8.
    Feulner, J., Zhou, S.K., Hammon, M., Hornegger, J., Comaniciu, D.: Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. Medical Image Analysis 17(2), 254–270 (2013)CrossRefGoogle Scholar
  9. 9.
    Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representation for contour and object detection. In: CVPR, pp. 3158–3165. IEEE (2013)Google Scholar
  10. 10.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CoRR abs/1411.4038 (2014)Google Scholar
  11. 11.
    Lu, L., Bi, J., Wolf, M., Salganicoff, M.: Effective 3D object detection and regression using probabilistic segmentation features in ct images. In: CVPR, pp. 1049–1056. IEEE (2011)Google Scholar
  12. 12.
    Roth, H., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Schwartz, L., Bogaerts, J., Ford, R., Shankar, L., Therasse, P., Gwyther, S., Eisenhauer, E.A.: Evaluation of lymph nodes with recist 1.1. Euro. J. of Cancer 45(2), 261–267 (2009)CrossRefGoogle Scholar
  14. 14.
    Seff, A., et al.: 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 544–552. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Summers, R.M., Yao, J., Pickhardt, P.J., Franaszek, M., Bitter, I., Brickman, D., Krishna, V., Choi, J.R.: Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population. Gastroenterology 129, 1832–1844 (2005)CrossRefGoogle Scholar
  16. 16.
    Tola, E., Lepetit, V., Fua, P.: DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo. IEEE Trans. on Pat. Ana. and Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ari Seff
    • 1
  • Le Lu
    • 1
  • Adrian Barbu
    • 1
  • Holger Roth
    • 1
  • Hoo-Chang Shin
    • 1
  • Ronald M. Summers
    • 1
  1. 1.Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging SciencesNational Institutes of Health Clinical CenterBethesdaUSA

Personalised recommendations