Advertisement

Flexible Reconstruction and Correction of Unpredictable Motion from Stacks of 2D Images

  • Bernhard KainzEmail author
  • Amir Alansary
  • Christina Malamateniou
  • Kevin Keraudren
  • Mary Rutherford
  • Joseph V. Hajnal
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

We present a method to correct motion in fetal in-utero scan sequences. The proposed approach avoids previously necessary manual segmentation of a region of interest. We solve the problem of non-rigid motion by splitting motion corrupted slices into overlapping patches of finite size. In these patches the assumption of rigid motion approximately holds and they can thus be used to perform a slice-to-volume-based (SVR) reconstruction during which their consistency with the other patches is learned. The learned information is used to reject patches that are not conform with the motion corrected reconstruction in their local areas. We evaluate rectangular and evenly distributed patches for the reconstruction as well as patches that have been derived from super-pixels. Both approaches achieve on 29 subjects aged between 22–37 weeks a sufficient reconstruction quality and facilitate following 3D segmentation of fetal organs and the placenta.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)CrossRefGoogle Scholar
  3. 3.
    Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L.: Multivariate data analysis, vol. 6. Pearson Prentice Hall, Upper Saddle River (2006)Google Scholar
  4. 4.
    Kainz, B., Keraudren, K., Kyriakopoulou, V., Rutherford, M., Hajnal, J.V., Rueckert, D.: Fast Fully Automatic Brain Detection in Foetal MRI Using Dense Rotation Invariant Image Descriptors. In: IEEE ISBI 2014, pp. 1230–1233 (2014)Google Scholar
  5. 5.
    Kainz, B., Steinberger, M., Wein, W., Murgasova, M., Malamateniou, C., Keraudren, K., Torsney-Weir, T.K., Aljabar, P., Rutherford, M., Hajnal, J., Rueckert, D.: Fast Volume Reconstruction from Motion Corrupted Stacks of 2D Slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)CrossRefGoogle Scholar
  6. 6.
    Kainz, B., Malamateniou, C., Murgasova, M., Keraudren, K., Rutherford, M., Hajnal, J.V., Rueckert, D.: Motion Corrected 3D Reconstruction of the Fetal Thorax from Prenatal MRI. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 284–291. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Keraudren, K., Murgasova, M., Kyriakopoulou, V., Malamateniou, C., Rutherford, M., Kainz, B., Hajnal, J., Rueckert, D.: Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction. NeuroImage 101, 633–643 (2014)CrossRefGoogle Scholar
  8. 8.
    Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of Fetal Brain MRI with Intensity Matching and Complete Outlier Removal. Medical Image Analysis 16(8), 1550–1560 (2012)CrossRefGoogle Scholar
  9. 9.
    Levine, D.: Fetal Magnetic Resonance Imaging. J. Matern. Fetal Neonatal Med. 15(2), 85–94 (2004)CrossRefGoogle Scholar
  10. 10.
    Prayer, D., Brugger, P., Prayer, L.: Fetal MRI: techniques and protocols. Pediatric Radiology 34(9), 685–693 (2004)CrossRefGoogle Scholar
  11. 11.
    Rousseau, F., Glenn, O.A., Iordanova, B., Rodriguez-Carranza, C., Vigneron, D.B., Barkovich, J.A., Studholme, C.: Registration-Based Approach for Reconstruction of High-Resolution In Utero Fetal MR Brain Images. Academic Radiology 13(9), 1072–1081 (2006)CrossRefGoogle Scholar
  12. 12.
    Wolf, I., Vetter, M., Wegner, I., Böttger, T., Nolden, M., Schöbinger, M., Hastenteufel, M., Kunert, T., Meinze, H.P.: The medical imaging interaction toolkit. Medical Image Analysis 9(6), 594–604 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernhard Kainz
    • 1
    • 2
    Email author
  • Amir Alansary
    • 1
  • Christina Malamateniou
    • 2
  • Kevin Keraudren
    • 1
  • Mary Rutherford
    • 2
  • Joseph V. Hajnal
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Division of Imaging SciencesKing’s College LondonLondonUK

Personalised recommendations