Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 528–535Cite as

  1. Home
  2. Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
  3. Conference paper
Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization

Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization

  • Pablo Mesejo17,
  • Sandrine Saillet18,21,
  • Olivier David18,21,
  • Christian Bénar19,20,
  • Jan M. Warnking18,21 &
  • …
  • Florence Forbes17 
  • Conference paper
  • First Online: 20 November 2015
  • 5785 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9350)

Abstract

Physiological and biophysical models have been proposed to link neural activity to the Blood Oxygen Level-Dependent (BOLD) signal in functional MRI (fMRI). They rely on a set of parameter values that cannot always be extracted from the literature. Their estimation is challenging because there are more than 10 potentially interesting parameters involved in non-linear equations and whose interactions may result in identifiability issues. However, the availability of statistical prior knowledge on these parameters can greatly simplify the estimation task. In this work we focus on the extended Balloon model and propose the estimation of 15 parameters using an Evolutionary Computation (EC) global search method. To combine both the ability to escape local optima and to incorporate prior knowledge, we derive the EC objective function from Bayesian modeling. This novel method provides promising results on a challenging real fMRI data set involving rats with epileptic activity and compares favorably with the conventional Expectation Maximization Gauss-Newton approach.

Keywords

  • Functional MRI
  • BOLD signal
  • Biophysical parameters
  • Evolutionary Computation
  • Differential Evolution
  • Expectation Maximization

Chapter PDF

Download to read the full chapter text

References

  1. Buxton, R.B., Uludağ, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004)

    Google Scholar 

  2. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during Brain activation: the balloon model. Magn. Reson. Med. 39, 855–864 (1998)

    CrossRef  Google Scholar 

  3. Chumbley, J.R., Friston, K.J., Fearn, T., Kiebel, S.J.: A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38(3), 478–487 (2007)

    CrossRef  Google Scholar 

  4. Coquery, N., Francois, O., Lemasson, B., Debacker, C., Farion, R., Rémy, C., Barbier, E.L.: Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. J. Cereb. Blood Flow Metab. 34(8), 1354–1362 (2014)

    CrossRef  Google Scholar 

  5. Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art. IEEE T. Evolut. Comput. 15, 4–31 (2011)

    CrossRef  Google Scholar 

  6. David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., Depaulis, A.: Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 6(12), 2683–2697 (2008)

    CrossRef  Google Scholar 

  7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  8. Frau-Pascual, A., Ciuciu, P., Forbes, F.: Physiological models comparison for the analysis of ASL fMRI data. In: EEE International Symposium on Biomedical Imaging (ISBI) (2015)

    Google Scholar 

  9. Friston, K.J.: Bayesian estimation of dynamical systems: an application to fMRI. Neuroimage 16, 513–530 (2002)

    CrossRef  Google Scholar 

  10. Friston, K.J., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000)

    CrossRef  Google Scholar 

  11. Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., Unser, M.: Activelets: Wavelets for sparse representation of hemodynamic responses. Signal Process 91(12), 2810–2821 (2011)

    CrossRef  Google Scholar 

  12. Marreiros, A., Kiebel, S., Friston, K.: Dynamic causal modelling for fMRI: A two-state model. NeuroImage 39, 269–278 (2008)

    CrossRef  Google Scholar 

  13. Silvennoinen, M., Clingman, C., Golay, X., Kauppinen, R., van Zijl, P.: Comparison of the dependence of blood R2 and R* on oxygen saturation at 1.5 and 4.7 Tesla. Magn. Reson. Med. 49(1), 47–60 (2003)

    CrossRef  Google Scholar 

  14. Stephan, K.E., Weiskopf, N., Drysdale, P.M., Robinson, P.A., Friston, K.J.: Comparing hemodynamic models with DCM. Neuroimage 38(3), 387–401 (2007)

    CrossRef  Google Scholar 

  15. Stephan, K., Kasper, L., Harrison, L., Daunizeau, J., den Ouden, H., Breakspear, M., Friston, K.: Nonlinear dynamic causal models for fMRI. NeuroImage 42(2), 649–662 (2008)

    CrossRef  Google Scholar 

  16. Vakorin, V.A., Krakovska, O.O., Borowsky, R., Sarty, G.E.: Inferring neural activity from BOLD signals through nonlinear optimization. Neuroimage 38(2), 248–260 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA, Univ. Grenoble Alpes, LJK, F-38000, Grenoble, France

    Pablo Mesejo & Florence Forbes

  2. INSERM, U836, F-38000, Grenoble, France

    Sandrine Saillet, Olivier David & Jan M. Warnking

  3. INSERM, UMR1106, Marseille, France

    Christian Bénar

  4. Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France

    Christian Bénar

  5. Univ. Grenoble Alpes, GIN, F-38000, Grenoble, France

    Sandrine Saillet, Olivier David & Jan M. Warnking

Authors
  1. Pablo Mesejo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sandrine Saillet
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Olivier David
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Christian Bénar
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jan M. Warnking
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Florence Forbes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pablo Mesejo .

Editor information

Editors and Affiliations

  1. TU München, Garching, Germany

    Nassir Navab

  2. Lehrstuhl Informatik 5, University of Erlangen-Nuremberg, Erlangen, Germany

    Joachim Hornegger

  3. Brigham and Women's Hospital, Boston, Massachusetts, USA

    William M. Wells

  4. University of Sheffield, Sheffield, Suffolk, United Kingdom

    Alejandro Frangi

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mesejo, P., Saillet, S., David, O., Bénar, C., Warnking, J.M., Forbes, F. (2015). Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_63

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-24571-3_63

  • Published: 20 November 2015

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24570-6

  • Online ISBN: 978-3-319-24571-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature