Skip to main content

Spinocerebellar and Cerebellospinal Pathways

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Although the cerebellum participates in many different functions, its coordinating role in learning and execution of movements remains its most visible aspect to our behavior. Multiple pathways convey information from the body to the cerebellum. These spinal pathways can be divided in systems that, either directly or indirectly, enter the cerebellar cortex to terminate as mossy fibers and in pathways that reach the cerebellum by way of the inferior olive and as a consequence will terminate as climbing fibers. Cerebellar processing is also mediated to the spinal cord by a multitude of routes. Corticospinal, rubrospinal, tectospinal, vestibulospinal and reticulospinal tracts may all, at least to some extent, be controlled by cerebellar output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681

    Article  CAS  PubMed  Google Scholar 

  • Arshavsky YI, Gelfand IM, Orlovsky GN (1986) Cerebellum and rhythmical movements, vol 13, Studies of brain function. Springer, Berlin

    Google Scholar 

  • Azim E, Jiang J, Alstermark B, Jessell TM (2014) Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 508(7496):357–363. doi:10.1038/nature13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29(32):10104–10110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60(5-6):511–541

    Article  PubMed  Google Scholar 

  • Cicirata F, Angaut P, Serapide MF, Panto MR, Nicotra G (1992) Multiple representation in the nucleus lateralis of the cerebellum: an electrophysiologic study in the rat. Exp Brain Res Exp Hirnforsch Exp Cereb 89(2):352–362

    CAS  Google Scholar 

  • Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508(7496):351–356. doi:10.1038/nature13023

    Article  CAS  PubMed  Google Scholar 

  • Fields H (2004) State-dependent opioid control of pain. Nat Rev 5(7):565–575

    Article  CAS  Google Scholar 

  • Flavell CR, Cerminara NL, Apps R, Lumb BM (2014) Spino-olivary projections in the rat are anatomically separate from postsynaptic dorsal column projections. J Comp Neurol 522(9):2179–2190. doi:10.1002/cne.23527

    Article  PubMed  Google Scholar 

  • Fukushima K, van der Hoeff-van Halen R, Peterson BW (1978) Direct excitation of neck motoneurons by interstitiospinal fibers. Exp Brain Res 33(3-4):565–581

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Cowie RJ (1989) Projections from the rostral mesencephalic reticular formation to the spinal cord. An HRP and autoradiographical tracing study in the cat. Exp Brain Res 75(2):265–279

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Yamada J (1989) Spinocerebellar tract neurons with axons passing through the inferior or superior cerebellar peduncles. A retrograde horseradish peroxidase study in rats. Brain Behav Evol 34(3):133–142

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91(1):15–36

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288(1):19–38. doi:10.1002/cne.902880103

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Gao X, Yaginuma H (1995) Spinovestibular projections in the rat, with particular reference to projections from the central cervical nucleus to the lateral vestibular nucleus. J Comp Neurol 361(2):334–334. doi:10.1002/cne.903610210

    Article  CAS  PubMed  Google Scholar 

  • Nisimaru N (2004) Cardiovascular modules in the cerebellum. Jpn J Physiol 54(5):431–448

    Article  PubMed  Google Scholar 

  • Onodera S, Hicks TP (2009) A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One 4(8):e6623

    Article  PubMed  PubMed Central  Google Scholar 

  • Oscarsson O, Sjolund B (1977) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28(5):469–486

    CAS  PubMed  Google Scholar 

  • Pivetta C, Esposito MS, Sigrist M, Arber S (2014) Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 156(3):537–548. doi:10.1016/j.cell.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  • Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, Popa D, Lena C (2014) Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci 17(9):1233–1239. doi:10.1038/nn.3773

    Article  CAS  PubMed  Google Scholar 

  • Quy PN, Fujita H, Sakamoto Y, Na J, Sugihara I (2011) Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. J Comp Neurol 519(5):874–899

    Article  PubMed  Google Scholar 

  • Ruigrok TJ (2011) Ins and outs of cerebellar modules. Cerebellum (Lond Engl) 10(3):464–474

    Article  Google Scholar 

  • Ruigrok TJH (2013) Cerebellar influences on descending spinal motor systems. In: Manto M, Gruol JD, Schmahmann N, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellum disorders. Springer, Dordrecht, pp 497–528

    Chapter  Google Scholar 

  • Ruigrok TJ, Pijpers A, Goedknegt-Sabel E, Coulon P (2008) Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. Eur J Neurosci 28(1):181–200

    Article  PubMed  Google Scholar 

  • Tolbert DL, Bantli H, Hames EG, Ebner TJ, McMullen TA, Bloedel JR (1980) A demonstration of the dentato-reticulospinal projection in the cat. Neuroscience 5(8):1479–1488

    Article  CAS  PubMed  Google Scholar 

  • Udo M, Oda Y, Tanaka K, Horikawa J (1976) Cerebellar control of locomotion investigated in cats: discharges from Deiters’ neurones, EMG and limb movements during local cooling of the cerebellar cortex. Prog Brain Res 44:445–459. doi:10.1016/S0079-6123(08)60751-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J. H. Ruigrok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruigrok, T.J.H. (2016). Spinocerebellar and Cerebellospinal Pathways. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_9

Download citation

Publish with us

Policies and ethics