Identifying Web Tables: Supporting a Neglected Type of Content on the Web

  • Mikhail Galkin
  • Dmitry Mouromtsev
  • Sören Auer
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 518)


The abundance of the data in the Internet facilitates the improvement of extraction and processing tools. The trend in the open data publishing encourages the adoption of structured formats like CSV and RDF. However, there is still a plethora of unstructured data on the Web which we assume contain semantics. For this reason, we propose an approach to derive semantics from web tables which are still the most popular publishing tool on the Web. The paper also discusses methods and services of unstructured data extraction and processing as well as machine learning techniques to enhance such a workflow. The eventual result is a framework to process, publish and visualize linked open data. The software enables tables extraction from various open data sources in the HTML format and an automatic export to the RDF format making the data linked. The paper also gives the evaluation of machine learning techniques in conjunction with string similarity functions to be applied in a tables recognition task.


Machine learning Linked Data Semantic Web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babyak, M.A.: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine 66(3), 411–421 (2004)Google Scholar
  2. 2.
    Cafarella, M., Wu, E., Halevy, A., Zhang, Y., Wang, D.: Webtables: exploring the power of tables on the web. In: VLDB 2008 (2008)Google Scholar
  3. 3.
    Crestan, E., Pantel, P.: Web-scale table census and classification. In: ACM WSDM 2011 Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 545–554 (2011)Google Scholar
  4. 4.
    Embley, D., Tao, C., Liddle, S.: Automating the extraction of data from html tables with unknown structure. Data and Knowledge Engineering 54, 3–28 (2005). Special issue: ERCrossRefGoogle Scholar
  5. 5.
    Ermilov, I., Auer, S., Stadler, C.: User-driven semantic mapping of tabular data. In: Proceedings of the 9th International Conference on Semantic Systems, pp. 105–112. ACM (2013)Google Scholar
  6. 6.
    Haase, P., Schmidt, M., Schwarte, A.: The information workbench as a self-service platform for linked data applications. In: COLD. Citeseer (2011)Google Scholar
  7. 7.
    Hu, J., Kashi, R., Lopresti, D., Wilfong, G.: Evaluating the performance of table processing algorithms. International Journal on Document Analysis and Recognition 4, 140–153 (2002)CrossRefGoogle Scholar
  8. 8.
    Hurst, M.: A constraint-based approach to table structure derivation. In: Proceedings of International Conference on Document Analysis and Recognition (ICDAR 2003), pp. 911–915 (2003)Google Scholar
  9. 9.
    Kolchin, M., Kozlov, F.: A template-based information extraction from web sites with unstable markup. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 89–94. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Mitchell, T.: Machine Learning. McGraw-Hill Science/Engineering/Math (1997)Google Scholar
  11. 11.
    Mouromtsev, D., Vlasov, V., Parkhimovich, O., Galkin, M., Knyazev, V.: Development of the st. petersburg’s linked open data site using information workbench. In: 14th FRUCT Proceedings, pp. 77–82 (2013)Google Scholar
  12. 12.
    Rokach, L., Maimon, O.: Data mining with decision trees: theory and applications. World Scientific Pub. Co., Inc. (2008)Google Scholar
  13. 13.
    Silva, A., Jorge, A., Torgo, L.: Design of an end-to-end method to extract information from tables. International Journal of Document Analysis and Recognition (IJDAR) 8, 144–171 (2006)CrossRefGoogle Scholar
  14. 14.
    Tijerino, Y., Embley, D., Lonsdale, D., Ding, Y., Nagy, G.: Towards ontology generation from tables. World Wide Web 8, 261–285 (2005)CrossRefGoogle Scholar
  15. 15.
    Tou, J., Gonzalez, R.: Pattern Recognition Principles. University of Southern California (1974)Google Scholar
  16. 16.
    Ukkonen, E.: Approximate string matching with q-grams and maximal matches. Theoretical Computer Science, 191–211 (1992)Google Scholar
  17. 17.
    Vorontsov, K.: Machine learning methods (2009).
  18. 18.
    Wang, Y., Hu, J.: A machine learning based approach for table detection on the web. In: Proceedings of the 11th WWW, pp. 242–250 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of BonnBonnGermany
  2. 2.ITMO UniversitySaint PetersburgRussia

Personalised recommendations