Abstract
Beginning from two theories, classical and quantum mechanical, as realized in terms of Newton’s second law and the time-independent Schrödinger equation, we put forth a framework for understanding the development of atomistic potentials that include chemistry. Our analysis introduces, explains, and exploits the Fragment Hamiltonian approach to the electronic structure of molecular and condensed matter systems. Illustrations of the Fragment Hamiltionian display the roles of various physical concepts in the formation of these atomistic potentials. Electron density fluctuations are clearly seen as essential to the realistic description of interatomic interactions over a large range of nuclear (ionic) configurations. Finally, we present a novel approach to the parameterization of interatomic potentials that explicitly include the effect of charge fluctuations, the environment-dependent dynamic charge potential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LCAO stand for ‘linear combination of atomic orbitals’ which is commonly used in wave function calculations.
References
J.A. Aguiar, P.P. Dholabhai, Z. Bi, Q. Jia, E.G. Fu, Y.Q. Wang, T. Aoki, J. Zhu, A. Misra, B.P. Uberuaga, Adv. Mater. Interf. 1, 201300142 (2014)
G. Hunter, Int. J. Quant. Chem. 9, 237 (1975)
E. Deumens, A. Diz, H. Taylor, Y. Ohrn, J. Chem. Phys. 96, 6820 (1992)
D.A. Micha, K. Runge, Phys. Rev. A 50, 322 (1994)
A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)
L.S. Cederbaum, J. Chem. Phys. 138, 224110 (2013)
F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977)
R.F.W. Bader, J. Chem. Phys. 73, 2871 (1980)
R.F.W. Bader, Atoms in molecules, in Encyclopedia of Computational Chemistry (Wiley, 2002)
A. Cedillo, P.K. Chattaraj, R.G. Parr, Intern. J. Quant. Chem. 77, 403 (2000)
R.F. Nalewajski, R.G. Parr, J. Phys. Chem. A 105, 7391 (2001)
R.F. Nalewajski, J. Phys. Chem. A 107, 3792 (2003)
W. Moffitt, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 210, 245 (1951)
F.O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963)
J.C. Tully, J. Chem. Phys. 58, 1396 (1973)
J.C. Tully, C.M. Truesdale, J. Chem. Phys. 65, 1002 (1976)
J.A. Olson, B.J. Garrison, J. Chem. Phys. 83, 1392 (1985)
S.M. Valone, J. Chem. Theor. Comput. 7, 2253 (2011)
J. Rychlewski, R.G. Parr, J. Chem. Phys. 84, 1696 (1986)
R.S. Mulliken, J. Chem. Phys. 2, 782 (1934)
R. Jastrow, Phys. Rev. 98, 1479 (1955)
W. Cencek, W. Kutzelnigg, J. Chem. Phys. 105, 5878 (1996)
R. Colle, O. Salvetti, Theor. Chim. Acta 53, 55 (1979)
R. Colle, O. Salvetti, J. Chem. Phys. 79, 1404 (1983)
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)
R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)
E. Cancès, C. Le Bris, P.-L. Lions, Nonlinearity 21, T165 (2008)
E.P. Gyftopoulos, G.N. Hatsopoulos, Proc. Natl. Acad. Sci. 60, 786 (1965)
R.P. Feynman, in Statistical Mechanics: A Set of Lectures; Notes Taken by R. Kikuchi and H. A. Feiveson, ed. by J. Shaham (W.A. Benjamin, Reading, 1972), Book 2, pp. 70–80
J.H. van Lenthe, G.G. Balint-Kurti, J. Chem. Phys. 78, 5699 (1983)
D. Lauvergnat, P.C. Hiberty, D. Danovich, S. Shaik, J. Phys. Chem. 100, 5715 (1996)
G. Gallup, Valence Bond Methods: Theory and Applications (Cambridge University Press, 2002)
A. Shurki, H.A. Crown, J. Phys. Chem. B 109, 23638 (2005)
L. Song, Y. Mo, Q. Zhang, W. Wu, J. Comput. Chem. 26, 514 (2005)
A. Shurki, Theor. Chem. Acc.: Theor. Comput. Model. (Theoretica Chimica Acta) 116, 253 (2006)
A. Sharir-Ivry, H.A. Crown, W. Wu, A. Shurki, J. Phys. Chem. A 112, 2489 (2008)
H.O. Pritchard, H.A. Skinner, Chem. Rev. 55, 745 (1955)
J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)
S.M. Valone, S.R. Atlas, J. Chem. Phys. 120, 7262 (2004)
S.M. Valone, S.R. Atlas, Phys. Rev. Lett. 97, 256402 (2006)
S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101, 6141 (1994)
X.W. Zhou, H.N.G. Wadley, J.-S. Filhol, M.N. Neurock, Phys. Rev. B 69, 035402 (2004)
J. Chen, T.J. Martinez, Chem. Phys. Lett. 438, 315 (2007)
J. Morales, T.J. Martìnez, J. Phys. Chem. A 105, 2842 (2001)
J. Morales, T.J. Martìnez, J. Phys. Chem. A 108, 3076 (2004)
W.J. Mortier, S.K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)
A.K. Rappé, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)
A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)
J. Yu, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 75, 085311 (2007)
R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, J. Chem. Phys. 125, 094108 (2006)
R.A. Nistor, M.H. Müser, Phys. Rev. B 79, 104303 (2009)
D. Mathieu, J. Chem. Phys. 127, 224103 (2007)
T. Verstraelen, V.V. Speybroeck, M. Waroquier, J. Chem. Phys. 131, 044127 (2009)
P.T. Mikulski, M.T. Knippenberg, J.A. Harrison, J. Chem. Phys. 131, 241105 (2009)
R.P. Iczkowski, J.L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961)
S.M. Valone, J. Phys. Chem. Lett. 2, 2618 (2011)
J.C. Phillips, Rev. Mod. Phys. 42, 317 (1970)
R.J. Spindler Jr, J. Quant. Spectry. Radiative Trans. 9, 597 (1969)
R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)
P. Ghosez, J.-P. Michenaud, X. Gonze, Phys. Rev. B 58, 6224 (1998)
W. Harrison, Elementary Electronic Structure of Materials (W. A. Benjamin, Reading, 1996)
M. Cohen, A. Wasserman, J. Stat. Phys. 125, 1121 (2006)
J. Cioslowski, B.B. Stefanov, J. Chem. Phys. 99, 5151 (1993)
S.M. Valone, S.R. Atlas, M.I. Baskes, Model. Simul. Mater. Sci. Eng. 22, 045013 (2014)
J.E. Hirsch, Phys. Rev. B 48, 3327 (1993)
M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)
M.I. Baskes, Phys. Rev. B 46, 2727 (1992)
A.M. Dongare, M. Neurock, L.V. Zhigilei, Phys. Rev. B 80, 184106 (2009)
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)
M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)
A.P. Sutton, Electronic Structure of Materials (Oxford Science Publications, Clarendon Press, 1993), Chap. 12
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992). References 26 and 27 therein
G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)
G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)
R.T. Sanderson, Science 114, 670 (1951)
R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)
F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50, 11996 (1994)
F.H. Streitz, J.W. Mintmire, Langmuir 12, 4605 (1996)
A. Alavi, L.J. Alvarez, S.R. Elliott, I.R. McDonald, Philos. Mag. B 65, 489 (1992)
L. Huang, J. Kieffer, J. Chem. Phys. 118, 1487 (2003)
B.W.H. van Beest, G.J. Kramer, R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990)
M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys, W.J. Stevens, J. Phys. Chem. A 105, 293 (2001)
J. Cioslowski, Phys. Rev. Lett. 62, 1469 (1989)
X.W. Zhou, F.P. Doty, Phys. Rev. B 78, 224307 (2008)
G. Koster, T.H. Geballe, B. Moyzhes, Phys. Rev. B 66, 085109 (2002)
H.S. Smalø, P.-O. Åstrand, L. Jensen, J. Chem. Phys. 131, 044101 (2009)
M.H. Cohen, A. Wasserman, Isr. J. Chem. 43, 219 (2003)
P. Elliott, M.H. Cohen, A. Wasserman, K. Burke, J. Chem. Theor. Comput. 5, 827 (2009)
G. Wu, G. Lu, C.J. García-Cervera, W.E, Phys. Rev. B 79, 035124 (2009)
A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions (John Wiley and Sons Inc, New York, 1991)
M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 11, 700 (1990)
F. Bloch, Zeits. Phys. A 52, 555 (1929)
S.M. Valone, S.R. Atlas, Philos. Mag. 86, 2683 (2006)
S.M. Valone, J. Li, S. Jindal, Int. J. Quant. Chem. 108, 1452 (2008)
R. Drautz, D.G. Pettifor, Phys. Rev. B 74, 174117 (2006)
M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003)
P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta, J. Phys. C: Solid State Phys. 21, 35 (1988)
J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)
G.J. Ackland, M.W. Finnis, V. Vitek, J. Phys. F: Metal Phys. 18, L153 (1988)
M.I. Baskes, S.G. Srinivasan, S.M. Valone, R.G. Hoagland, Phys. Rev. B 75, 94113 (2007)
J. Hubbard, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 276, 238 (1963)
A. Elsener, O. Politano, P.M. Derlet, H.V. Swygenhoven, Model. Simul. Mater. Eng. 16, 025006 (2008)
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, Hermans, J, in Intermolecular Forces, ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331
C.D. Berweger, W.F. van Gunsteren, F. Muller-Plathe, Chem. Phys. Lett. 232, 429 (1995)
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L.J. Klein, Chem. Phys. 79, 926 (1983)
E. Neria, S. Fischer, M.J. Karplus, Chem. Phys. 105, 1902 (1996)
M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)
H. Saint-Martin, J. Hernandez-Cobos, M.I. Bernal-Uruchurty, I. Ortega-Blake, H.J.C. Berendsen, J. Chem. Phys. 113, 10899 (2000)
G. Corongiu, E. Clementi, J Chem Phys. 97, 2030 (1992)
O. Matsuoka, E. Clementi, M. Yoshimine, J. Chem. Phys. 64, 1351 (1976)
P.-O. Åstrand, A. Wallqvist, G. Karlström, J. Chem. Phys. 100 (1994)
H.A. Stern, B.J. Berne, R.A. Friesner, J. Chem. Phys. 115, 2237 (2001)
J.W. Halley, J.R. Rustad, A. Rahman, J. Chem. Phys. 98, 4110 (1993)
R.L. Corrales, J. Chem. Phys. 110, 9071 (1999)
U.W. Schmitt, G.A. Voth, J. Chem. Phys. 111, 9361 (1999)
T.J.F. Day, A.V. Soudackov, M. Cuma, U.W. Schmitt, G.A. Voth, J. Chem. Phys. 117, 5839 (2002)
S.-B. Zhu, G.W. Robinson, Proc. Int. Conf. Supercomp. II, 189 (1989)
S.-B. Zhu, S. Singh, G.W. Robinson, J. Chem. Phys. 95, 2791 (1991)
L.X. Dang, T. Cheng, J. Chem. Phys. 106, 8149 (1997)
C. Millot, J.-C. Soetens, M.T.C. Martins Costa, M.P. Hodges, A.J. Stone, J. Phys. Chem. A 102, 754 (1998)
C.J. Burnham, J.C. Li, S.S. Xantheas, M.S. Leslie, J. Chem. Phys. 110, 4566 (1999)
G.C. Groenenboom, E.M. Mas, R. Bukowski, K. Szalewicz, P.E.S. Wormer, A.V. Avoird, Phys. Rev. Lett. 84, 4072 (2000)
R.F. Byrd, P. Lu, J. Nocedal, C. Zhu, 16, 1190 (1995)
S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, J. Phys. Chem. A 105, 10525 (2001)
S.T. Bromley, E. Flikkema, Phys. Rev. Lett. 95, 185505 (2005)
S. Tsuneyuki, M. Tsukada, H. Aoki, Y. Matsui, Phys. Rev. Lett. 61, 869 (1988)
E. Flikkema, S.T. Bromley, Chem. Phys. Lett. 378, 622 (2003)
E. Flikkema, S.T. Bromley, J. Phys. Chem. B 108, 9638 (2004)
S.T. Bromley, M.A. Zwijnenburg, Th Maschmeyer, Phys. Rev. Lett. 90, 35502 (2003)
N.H. de Leeuw, Z. Du, J. Li, S. Yip, T. Zhu, Nano Lett. 3, 1347 (2003)
S.T. Bromley, Nano Lett. 4, 1427 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
The functional forms for the environment dependent charges as well as the EDD-Q potential form for water and silica are given below:
Silica
The charge on a silica atom is obtained as follows:
where the bond charge is defined by
and
In the above equations, r 0 equals unity and has dimensions of Å, R AB and R AC are the distances of the Si atom A from oxygens B and C respectively, and θ BAC is the angle formed by those three atoms; the various parameters are given in Table 3.9.
Similarly, the net charge on an oxygen atom having L Si silicon neighbors is given by
where we have used the definition of bond charge from (3.166). As is obvious from (3.165) and (3.168), a net residual charge q res is associated with isolated silicon or oxygen atoms.
Equations (3.169) and (3.170) was used as the basis for our potential function with the functional form and the parameters of ϕ AB and \( \mathcal{A}_A\) chosen to yield the ground state (as well as the deformed) geometry and energetics of the model clusters as predicted by DFT. The effective charges on atoms were scaled by a constant multiplicative factor while evaluating the Coulombic term in the energy expression. In other words, we use a screened value for the charge rather than the Mulliken populations, such that the ratio of the effective atomic charge and the Mulliken population is a constant.
where R AB was the distance of separation between atoms A and B and F(q A ) was expressed as
The functional forms of ϕ AB , \( \mathcal{A}_A\), F(q A ) and the total energy expression are given below in (3.171)–(3.176), and Table 3.10 contains the values of the various parameters. ϕ is given by
and
where for silicon atom A,
and for oxygen atom B,
\(\mathcal{A}_{\text{Si}}^{0}\), \(\mathcal{A}_{\text{O}}^{0}\), \(\mathcal{A}_{\text{Si}}^{C}\), and \(\mathcal{A}_{\text{Si}}^{C}\) are parameters given in Table 3.10. The potential energy of atom A is
where q A is the charge as obtained from (A3.1) to (A3.4) and \( q_{A}^{eff} \) is given by
with s q given in Table 3.10.
Water
Water polymorphs are characterized by the formation of hydrogen bonds between neighboring water molecules. In this regard, in the EDD-Q formulation, the net atomic charge on oxygen and hydrogen atoms constituting a water monomer depends both on the two underlying OH bond distance(s) and HOH bond angle as well as the hydrogen bond distance between neighboring water monomers.
First, we consider the functional form for calculating atomic charges within a monomer (H1OH2) that consists of two OH bonds (rOH1 and rOH2) and a bond angle (θ) expressed in radians.
The charge (expressed in e) on the hydrogen atom (qH1) is given by
where α, β, c, d are functions of θ (given below in (3.180)). The charge on the other hydrogen atom within a water monomer can also be obtained in a similar fashion.
To prevent energy discontinuities at the neighbor cutoff distance (=1.5 Å), a switching function S(t) is used for modulating the calculated hydrogen charge as given below:
The charge on the oxygen atom in the water monomer is given by
The corresponding parameters for the water monomer charges are given in Table 3.11.
To account for charge transfer between neighboring monomers, a net intermolecular charge transfer (dq) between two monomers is obtained as follows:
where r HB is the hydrogen bond distance between donor hydrogen atom and acceptor oxygen atoms belong to neighboring monomers respectively. The neighbor cutoff distance scut between two monomers is set to 2.5 Å and thus dq is modulated by the switching function S as defined before.
Further, dq is partitioned among the respective monomer atoms as follows:
In addition, for the acceptor molecule, \(dq^{{\text{H}}_{acceptor}}\) is obtained by partitioning [\(dq - dq^{{\text{O}}_{acceptor}}\)] equally among the two hydrogen atoms, while within the donor molecule the other hydrogen atom acquires an additional charge equaling [\(dq^{{\text{O}}_{donor}} + dq^{{\text{H}}_{donor}} - dq]\).
Thus the total charge for any atom is given by a sum of its ‘monomer’ charge plus additional charge transfer that is acquired due to hydrogen bonding with neighboring monomers. Note that an equivalent dq arises for every hydrogen bonded interaction a monomer participates in Table 3.12.
Similar to the Hamiltonian defined for silica, the energy of an atom i is given by
Here,
For an oxygen atom, \( {\mathcal{A}}_{A}^{m} \) is defined in terms of the monomer bond angle and bond distances as follows:
while for a hydrogen atom, \( {\mathcal{A}}_{A}^{m} \) depends on the number of hydrogen bonds (L OH) that the hydrogen atom (H) is involved with. Further, the index ‘s’ in (3.189) refers to the oxygen atom in the monomer to which H is associated with. \( \theta_{u{{\rm H}}s} \) refers to the angle between the Os–H bond (within the monomer) and the respective hydrogen bonds that H forms with other Ou atoms that belong to neighboring monomers.
Finally, \( \Phi _{ij} \) is given below:
Tables 3.13 and 3.14 provides the corresponding potential parameters.
For the two systems, the charge and the other potential parameters, while parameterized with respect to ab initio data, were selected in an ad hoc fashion. In order to provide a more streamlined approach, a more systematic approach leading to a more intuitive functional form is proposed as noted below. Future development of EDD-Q potentials will be based on these functional forms (3.191–3.199).
As discussed before, for a bond formed between atoms A and B, the bond-charge (\(q_{AB}^{bond}\)) is a function of the number of nearest neighbors of A(\(L_{A}\)) and B(\(L_{B}\)), the interatomic distance (\(R_{AB}\)), and the bond-angles that arise due to the remaining nearest neighbors of A and B (\(\theta_{BAC}\) and \(\theta_{ABC'}\)), where C and C′ represent the neighbors of A and B respectively. Note the qualitative similarity of the functional forms for charges (3.191–3.198) to the multipole expansion used commonly to express the electrostatic potentials that arise from a distribution of charges.
The EDD-Q Hamiltonian which consists of a Coulombic term, a 2-body term (ɸ) and an embedding term (F(q)) are given below. F(q) consists of three contributions; the most important of the three terms is the second term, which can be correlated to the ‘energy-cost’ for embedding a bond that is formed between pairs of atoms.
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Valone, S.M., Muralidharan, K., Runge, K. (2016). Interatomic Potentials Including Chemistry. In: Deymier, P., Runge, K., Muralidharan, K. (eds) Multiscale Paradigms in Integrated Computational Materials Science and Engineering. Springer Series in Materials Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-24529-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-24529-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24527-0
Online ISBN: 978-3-319-24529-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)