Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 226))

  • 1597 Accesses

Abstract

Beginning from two theories, classical and quantum mechanical, as realized in terms of Newton’s second law and the time-independent Schrödinger equation, we put forth a framework for understanding the development of atomistic potentials that include chemistry. Our analysis introduces, explains, and exploits the Fragment Hamiltonian approach to the electronic structure of molecular and condensed matter systems. Illustrations of the Fragment Hamiltionian display the roles of various physical concepts in the formation of these atomistic potentials. Electron density fluctuations are clearly seen as essential to the realistic description of interatomic interactions over a large range of nuclear (ionic) configurations. Finally, we present a novel approach to the parameterization of interatomic potentials that explicitly include the effect of charge fluctuations, the environment-dependent dynamic charge potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    LCAO stand for ‘linear combination of atomic orbitals’ which is commonly used in wave function calculations.

References

  1. J.A. Aguiar, P.P. Dholabhai, Z. Bi, Q. Jia, E.G. Fu, Y.Q. Wang, T. Aoki, J. Zhu, A. Misra, B.P. Uberuaga, Adv. Mater. Interf. 1, 201300142 (2014)

    Article  Google Scholar 

  2. G. Hunter, Int. J. Quant. Chem. 9, 237 (1975)

    Article  Google Scholar 

  3. E. Deumens, A. Diz, H. Taylor, Y. Ohrn, J. Chem. Phys. 96, 6820 (1992)

    Article  ADS  Google Scholar 

  4. D.A. Micha, K. Runge, Phys. Rev. A 50, 322 (1994)

    Article  ADS  Google Scholar 

  5. A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)

    Article  ADS  Google Scholar 

  6. L.S. Cederbaum, J. Chem. Phys. 138, 224110 (2013)

    Article  ADS  Google Scholar 

  7. F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977)

    Article  Google Scholar 

  8. R.F.W. Bader, J. Chem. Phys. 73, 2871 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. R.F.W. Bader, Atoms in molecules, in Encyclopedia of Computational Chemistry (Wiley, 2002)

    Google Scholar 

  10. A. Cedillo, P.K. Chattaraj, R.G. Parr, Intern. J. Quant. Chem. 77, 403 (2000)

    Article  Google Scholar 

  11. R.F. Nalewajski, R.G. Parr, J. Phys. Chem. A 105, 7391 (2001)

    Article  Google Scholar 

  12. R.F. Nalewajski, J. Phys. Chem. A 107, 3792 (2003)

    Article  Google Scholar 

  13. W. Moffitt, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 210, 245 (1951)

    Google Scholar 

  14. F.O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963)

    Article  Google Scholar 

  15. J.C. Tully, J. Chem. Phys. 58, 1396 (1973)

    Article  ADS  Google Scholar 

  16. J.C. Tully, C.M. Truesdale, J. Chem. Phys. 65, 1002 (1976)

    Article  ADS  Google Scholar 

  17. J.A. Olson, B.J. Garrison, J. Chem. Phys. 83, 1392 (1985)

    Article  ADS  Google Scholar 

  18. S.M. Valone, J. Chem. Theor. Comput. 7, 2253 (2011)

    Article  Google Scholar 

  19. J. Rychlewski, R.G. Parr, J. Chem. Phys. 84, 1696 (1986)

    Article  ADS  Google Scholar 

  20. R.S. Mulliken, J. Chem. Phys. 2, 782 (1934)

    Article  ADS  Google Scholar 

  21. R. Jastrow, Phys. Rev. 98, 1479 (1955)

    Article  ADS  Google Scholar 

  22. W. Cencek, W. Kutzelnigg, J. Chem. Phys. 105, 5878 (1996)

    Article  ADS  Google Scholar 

  23. R. Colle, O. Salvetti, Theor. Chim. Acta 53, 55 (1979)

    Article  Google Scholar 

  24. R. Colle, O. Salvetti, J. Chem. Phys. 79, 1404 (1983)

    Article  ADS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  26. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  Google Scholar 

  27. E. Cancès, C. Le Bris, P.-L. Lions, Nonlinearity 21, T165 (2008)

    Article  ADS  Google Scholar 

  28. E.P. Gyftopoulos, G.N. Hatsopoulos, Proc. Natl. Acad. Sci. 60, 786 (1965)

    Article  ADS  Google Scholar 

  29. R.P. Feynman, in Statistical Mechanics: A Set of Lectures; Notes Taken by R. Kikuchi and H. A. Feiveson, ed. by J. Shaham (W.A. Benjamin, Reading, 1972), Book 2, pp. 70–80

    Google Scholar 

  30. J.H. van Lenthe, G.G. Balint-Kurti, J. Chem. Phys. 78, 5699 (1983)

    Article  ADS  Google Scholar 

  31. D. Lauvergnat, P.C. Hiberty, D. Danovich, S. Shaik, J. Phys. Chem. 100, 5715 (1996)

    Article  Google Scholar 

  32. G. Gallup, Valence Bond Methods: Theory and Applications (Cambridge University Press, 2002)

    Google Scholar 

  33. A. Shurki, H.A. Crown, J. Phys. Chem. B 109, 23638 (2005)

    Article  Google Scholar 

  34. L. Song, Y. Mo, Q. Zhang, W. Wu, J. Comput. Chem. 26, 514 (2005)

    Article  Google Scholar 

  35. A. Shurki, Theor. Chem. Acc.: Theor. Comput. Model. (Theoretica Chimica Acta) 116, 253 (2006)

    Google Scholar 

  36. A. Sharir-Ivry, H.A. Crown, W. Wu, A. Shurki, J. Phys. Chem. A 112, 2489 (2008)

    Article  Google Scholar 

  37. H.O. Pritchard, H.A. Skinner, Chem. Rev. 55, 745 (1955)

    Article  Google Scholar 

  38. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  39. S.M. Valone, S.R. Atlas, J. Chem. Phys. 120, 7262 (2004)

    Article  ADS  Google Scholar 

  40. S.M. Valone, S.R. Atlas, Phys. Rev. Lett. 97, 256402 (2006)

    Article  ADS  Google Scholar 

  41. S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101, 6141 (1994)

    Article  ADS  Google Scholar 

  42. X.W. Zhou, H.N.G. Wadley, J.-S. Filhol, M.N. Neurock, Phys. Rev. B 69, 035402 (2004)

    Article  ADS  Google Scholar 

  43. J. Chen, T.J. Martinez, Chem. Phys. Lett. 438, 315 (2007)

    Article  ADS  Google Scholar 

  44. J. Morales, T.J. Martìnez, J. Phys. Chem. A 105, 2842 (2001)

    Article  Google Scholar 

  45. J. Morales, T.J. Martìnez, J. Phys. Chem. A 108, 3076 (2004)

    Article  Google Scholar 

  46. W.J. Mortier, S.K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)

    Article  Google Scholar 

  47. A.K. Rappé, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)

    Article  Google Scholar 

  48. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)

    Article  Google Scholar 

  49. J. Yu, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 75, 085311 (2007)

    Article  ADS  Google Scholar 

  50. R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, J. Chem. Phys. 125, 094108 (2006)

    Article  ADS  Google Scholar 

  51. R.A. Nistor, M.H. Müser, Phys. Rev. B 79, 104303 (2009)

    Article  ADS  Google Scholar 

  52. D. Mathieu, J. Chem. Phys. 127, 224103 (2007)

    Article  ADS  Google Scholar 

  53. T. Verstraelen, V.V. Speybroeck, M. Waroquier, J. Chem. Phys. 131, 044127 (2009)

    Article  ADS  Google Scholar 

  54. P.T. Mikulski, M.T. Knippenberg, J.A. Harrison, J. Chem. Phys. 131, 241105 (2009)

    Article  ADS  Google Scholar 

  55. R.P. Iczkowski, J.L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961)

    Article  Google Scholar 

  56. S.M. Valone, J. Phys. Chem. Lett. 2, 2618 (2011)

    Article  Google Scholar 

  57. J.C. Phillips, Rev. Mod. Phys. 42, 317 (1970)

    Article  ADS  Google Scholar 

  58. R.J. Spindler Jr, J. Quant. Spectry. Radiative Trans. 9, 597 (1969)

    Article  ADS  Google Scholar 

  59. R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)

    Article  Google Scholar 

  60. P. Ghosez, J.-P. Michenaud, X. Gonze, Phys. Rev. B 58, 6224 (1998)

    Article  ADS  Google Scholar 

  61. W. Harrison, Elementary Electronic Structure of Materials (W. A. Benjamin, Reading, 1996)

    Google Scholar 

  62. M. Cohen, A. Wasserman, J. Stat. Phys. 125, 1121 (2006)

    Article  ADS  Google Scholar 

  63. J. Cioslowski, B.B. Stefanov, J. Chem. Phys. 99, 5151 (1993)

    Article  ADS  Google Scholar 

  64. S.M. Valone, S.R. Atlas, M.I. Baskes, Model. Simul. Mater. Sci. Eng. 22, 045013 (2014)

    Article  ADS  Google Scholar 

  65. J.E. Hirsch, Phys. Rev. B 48, 3327 (1993)

    Article  ADS  Google Scholar 

  66. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  67. M.I. Baskes, Phys. Rev. B 46, 2727 (1992)

    Article  ADS  Google Scholar 

  68. A.M. Dongare, M. Neurock, L.V. Zhigilei, Phys. Rev. B 80, 184106 (2009)

    Article  ADS  Google Scholar 

  69. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)

    Article  ADS  Google Scholar 

  70. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  71. A.P. Sutton, Electronic Structure of Materials (Oxford Science Publications, Clarendon Press, 1993), Chap. 12

    Google Scholar 

  72. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992). References 26 and 27 therein

    Google Scholar 

  73. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  74. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  75. R.T. Sanderson, Science 114, 670 (1951)

    Article  ADS  Google Scholar 

  76. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  ADS  Google Scholar 

  77. F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50, 11996 (1994)

    Article  ADS  Google Scholar 

  78. F.H. Streitz, J.W. Mintmire, Langmuir 12, 4605 (1996)

    Article  Google Scholar 

  79. A. Alavi, L.J. Alvarez, S.R. Elliott, I.R. McDonald, Philos. Mag. B 65, 489 (1992)

    Article  ADS  Google Scholar 

  80. L. Huang, J. Kieffer, J. Chem. Phys. 118, 1487 (2003)

    Article  ADS  Google Scholar 

  81. B.W.H. van Beest, G.J. Kramer, R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990)

    Article  ADS  Google Scholar 

  82. M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys, W.J. Stevens, J. Phys. Chem. A 105, 293 (2001)

    Article  Google Scholar 

  83. J. Cioslowski, Phys. Rev. Lett. 62, 1469 (1989)

    Article  ADS  Google Scholar 

  84. X.W. Zhou, F.P. Doty, Phys. Rev. B 78, 224307 (2008)

    Article  ADS  Google Scholar 

  85. G. Koster, T.H. Geballe, B. Moyzhes, Phys. Rev. B 66, 085109 (2002)

    Article  ADS  Google Scholar 

  86. H.S. Smalø, P.-O. Åstrand, L. Jensen, J. Chem. Phys. 131, 044101 (2009)

    Article  ADS  Google Scholar 

  87. M.H. Cohen, A. Wasserman, Isr. J. Chem. 43, 219 (2003)

    Article  Google Scholar 

  88. P. Elliott, M.H. Cohen, A. Wasserman, K. Burke, J. Chem. Theor. Comput. 5, 827 (2009)

    Article  Google Scholar 

  89. G. Wu, G. Lu, C.J. García-Cervera, W.E, Phys. Rev. B 79, 035124 (2009)

    Google Scholar 

  90. A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions (John Wiley and Sons Inc, New York, 1991)

    Google Scholar 

  91. M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 11, 700 (1990)

    Article  Google Scholar 

  92. F. Bloch, Zeits. Phys. A 52, 555 (1929)

    Article  ADS  Google Scholar 

  93. S.M. Valone, S.R. Atlas, Philos. Mag. 86, 2683 (2006)

    Article  ADS  Google Scholar 

  94. S.M. Valone, J. Li, S. Jindal, Int. J. Quant. Chem. 108, 1452 (2008)

    Article  ADS  Google Scholar 

  95. R. Drautz, D.G. Pettifor, Phys. Rev. B 74, 174117 (2006)

    Article  ADS  Google Scholar 

  96. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  97. P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta, J. Phys. C: Solid State Phys. 21, 35 (1988)

    Article  ADS  Google Scholar 

  98. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  ADS  Google Scholar 

  99. G.J. Ackland, M.W. Finnis, V. Vitek, J. Phys. F: Metal Phys. 18, L153 (1988)

    Article  ADS  Google Scholar 

  100. M.I. Baskes, S.G. Srinivasan, S.M. Valone, R.G. Hoagland, Phys. Rev. B 75, 94113 (2007)

    Article  ADS  Google Scholar 

  101. J. Hubbard, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 276, 238 (1963)

    Google Scholar 

  102. A. Elsener, O. Politano, P.M. Derlet, H.V. Swygenhoven, Model. Simul. Mater. Eng. 16, 025006 (2008)

    Article  ADS  Google Scholar 

  103. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, Hermans, J, in Intermolecular Forces, ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331

    Chapter  Google Scholar 

  104. C.D. Berweger, W.F. van Gunsteren, F. Muller-Plathe, Chem. Phys. Lett. 232, 429 (1995)

    Article  ADS  Google Scholar 

  105. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L.J. Klein, Chem. Phys. 79, 926 (1983)

    ADS  Google Scholar 

  106. E. Neria, S. Fischer, M.J. Karplus, Chem. Phys. 105, 1902 (1996)

    ADS  Google Scholar 

  107. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)

    Article  ADS  Google Scholar 

  108. H. Saint-Martin, J. Hernandez-Cobos, M.I. Bernal-Uruchurty, I. Ortega-Blake, H.J.C. Berendsen, J. Chem. Phys. 113, 10899 (2000)

    Article  ADS  Google Scholar 

  109. G. Corongiu, E. Clementi, J Chem Phys. 97, 2030 (1992)

    Article  ADS  Google Scholar 

  110. O. Matsuoka, E. Clementi, M. Yoshimine, J. Chem. Phys. 64, 1351 (1976)

    Article  ADS  Google Scholar 

  111. P.-O. Åstrand, A. Wallqvist, G. Karlström, J. Chem. Phys. 100 (1994)

    Google Scholar 

  112. H.A. Stern, B.J. Berne, R.A. Friesner, J. Chem. Phys. 115, 2237 (2001)

    Article  ADS  Google Scholar 

  113. J.W. Halley, J.R. Rustad, A. Rahman, J. Chem. Phys. 98, 4110 (1993)

    Article  ADS  Google Scholar 

  114. R.L. Corrales, J. Chem. Phys. 110, 9071 (1999)

    Article  ADS  Google Scholar 

  115. U.W. Schmitt, G.A. Voth, J. Chem. Phys. 111, 9361 (1999)

    Article  ADS  Google Scholar 

  116. T.J.F. Day, A.V. Soudackov, M. Cuma, U.W. Schmitt, G.A. Voth, J. Chem. Phys. 117, 5839 (2002)

    Article  ADS  Google Scholar 

  117. S.-B. Zhu, G.W. Robinson, Proc. Int. Conf. Supercomp. II, 189 (1989)

    Google Scholar 

  118. S.-B. Zhu, S. Singh, G.W. Robinson, J. Chem. Phys. 95, 2791 (1991)

    Article  ADS  Google Scholar 

  119. L.X. Dang, T. Cheng, J. Chem. Phys. 106, 8149 (1997)

    Article  ADS  Google Scholar 

  120. C. Millot, J.-C. Soetens, M.T.C. Martins Costa, M.P. Hodges, A.J. Stone, J. Phys. Chem. A 102, 754 (1998)

    Article  Google Scholar 

  121. C.J. Burnham, J.C. Li, S.S. Xantheas, M.S. Leslie, J. Chem. Phys. 110, 4566 (1999)

    Article  ADS  Google Scholar 

  122. G.C. Groenenboom, E.M. Mas, R. Bukowski, K. Szalewicz, P.E.S. Wormer, A.V. Avoird, Phys. Rev. Lett. 84, 4072 (2000)

    Article  ADS  Google Scholar 

  123. R.F. Byrd, P. Lu, J. Nocedal, C. Zhu, 16, 1190 (1995)

    Google Scholar 

  124. S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, J. Phys. Chem. A 105, 10525 (2001)

    Article  Google Scholar 

  125. S.T. Bromley, E. Flikkema, Phys. Rev. Lett. 95, 185505 (2005)

    Article  ADS  Google Scholar 

  126. S. Tsuneyuki, M. Tsukada, H. Aoki, Y. Matsui, Phys. Rev. Lett. 61, 869 (1988)

    Article  ADS  Google Scholar 

  127. E. Flikkema, S.T. Bromley, Chem. Phys. Lett. 378, 622 (2003)

    Article  ADS  Google Scholar 

  128. E. Flikkema, S.T. Bromley, J. Phys. Chem. B 108, 9638 (2004)

    Article  Google Scholar 

  129. S.T. Bromley, M.A. Zwijnenburg, Th Maschmeyer, Phys. Rev. Lett. 90, 35502 (2003)

    Article  ADS  Google Scholar 

  130. N.H. de Leeuw, Z. Du, J. Li, S. Yip, T. Zhu, Nano Lett. 3, 1347 (2003)

    Article  ADS  Google Scholar 

  131. S.T. Bromley, Nano Lett. 4, 1427 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Valone .

Editor information

Editors and Affiliations

Appendix

Appendix

The functional forms for the environment dependent charges as well as the EDD-Q potential form for water and silica are given below:

Silica

The charge on a silica atom is obtained as follows:

$$q^{\rm{Si}} = q_{res}^{\rm{Si}} + \sum\limits_{{B = 1}}^{N_{O}} {\varepsilon_{B} \,dq_{{B}}^{\rm{SiO}} } ,\,{\text{where}}\,\varepsilon_{B} = \left\{ {\begin{array}{*{18}l} {1,R_{\rm{SiO}} \le r_{c} } \\ {0,\text{ otherwise}} \\ \end{array} } \right\}$$
(3.165)

where the bond charge is defined by

$$dq_{{B}}^{\rm{SiO}} =\Delta q\left[ {1 - \tan h_3\left( {\frac{{R_{AB} - r_{c1} }} {{r_{0} }}} \right)} \right] + \sum\limits_{C \ne B}^{L_{\rm O}} {\varepsilon_{C} dq_{{BC}}^{\rm{OSiO}} }$$
(3.166)

and

$$\begin{aligned} dq_{BC}^{{\rm OSiO}} & = \left[ {b_{1} \sin^{2} \theta_{BAC} \exp \left( { - \theta_{BAC} } \right) + b_{2} } \right]\tan h_4\left( {\frac{{R_{AB} - r_{c2} }}{{r_{0} }}} \right) \\ & \quad + \left[ {p_{1} \exp \left( { - \theta_{BAC}^{2} \sin^{2} \theta_{BAC} } \right)} \right]\tan h_2\left( {\frac{{R_{AB} - r_{c3} }}{{r_{0} }}} \right) \\ \end{aligned}$$
(3.167)

In the above equations, r 0 equals unity and has dimensions of Å, R AB and R AC are the distances of the Si atom A from oxygens B and C respectively, and θ BAC is the angle formed by those three atoms; the various parameters are given in Table 3.9.

Table 3.9 Charge parameters for the EDD-Q potential

Similarly, the net charge on an oxygen atom having L Si silicon neighbors is given by

$$q^{\text{O}} = q_{res}^{\text{O}} - \sum\limits_{{A = 1 }}^{L_{\text{Si}}} {\varepsilon_{A} dq_{A}^{\text{SiO}} } ,$$
(3.168)

where we have used the definition of bond charge from (3.166). As is obvious from (3.165) and (3.168), a net residual charge q res is associated with isolated silicon or oxygen atoms.

Equations (3.169) and (3.170) was used as the basis for our potential function with the functional form and the parameters of ϕ AB and \( \mathcal{A}_A\) chosen to yield the ground state (as well as the deformed) geometry and energetics of the model clusters as predicted by DFT. The effective charges on atoms were scaled by a constant multiplicative factor while evaluating the Coulombic term in the energy expression. In other words, we use a screened value for the charge rather than the Mulliken populations, such that the ratio of the effective atomic charge and the Mulliken population is a constant.

$$\bar E_{A} = F(q_{A}) + \frac{1}{2}\sum\limits_{B \ne A}^{N} {\phi_{AB} } + \frac{1}{2}\sum\limits_{B \ne A}^{N} {\frac{{q_{A} q_{B} }}{{R_{AB} }}}$$
(3.169)

where R AB was the distance of separation between atoms A and B and F(q A ) was expressed as

$$F\left( {q_{A} } \right) = \mathcal{A}_{A} q_{A} \ln q_{A}^{2}$$
(3.170)

The functional forms of ϕ AB , \( \mathcal{A}_A\), F(q A ) and the total energy expression are given below in (3.171)–(3.176), and Table 3.10 contains the values of the various parameters. ϕ is given by

$$\phi_{\text {SiSi}} = \frac{{a_{\text {SiSi}} }}{{r_{\text {SiSi}}^{12} }}$$
(3.171)
$$\phi_{\text {OO}} = \frac{{a_{\text {OO}} }}{{r_{\text {OO}}^{12} }}$$
(3.172)
$$\phi_{\text {SiO}} = \frac{{a_{\text {SiO}} }}{{r_{\text {SiO}}^{20} }} - \frac{{c_{\text {SiO}} }}{{r_{\text {SiO}}^{6} }}$$
(3.173)

and

$$F\left( {q_{A} } \right) = \left( {q^{A}_{res} - q^{A} } \right)\left[ {\mathcal{A}_{A}^{1} \ln \left( {\frac{{q^{A}_{res} - q_{A} }}{{d_{A} }}} \right)^{2} } \right]$$
(3.174)

where for silicon atom A,

$$\mathcal{A}_{A}^{1} = \mathcal{A}_{\text{Si}}^{C} \left\{ {1 + \sum\limits_{{B = 1}}^{L_{\text O}} {\varepsilon_{B} f^{\text{Si}} \left[ {1 - \tan h_\eta \left( {\frac{{r_{AB} - r_{ae} }}{{r_{0} }}} \right)} \right]} } \right\}$$
(3.175)

and for oxygen atom B,

$$\mathcal{A}_{B}^{1} = \mathcal{A}_{\text{O}}^{C} .$$
(3.176)

\(\mathcal{A}_{\text{Si}}^{0}\), \(\mathcal{A}_{\text{O}}^{0}\), \(\mathcal{A}_{\text{Si}}^{C}\), and \(\mathcal{A}_{\text{Si}}^{C}\) are parameters given in Table 3.10. The potential energy of atom A is

$$\bar E_{A} = F(q_{A} ) + \frac{1}{2}\sum\limits_{B \ne A}^{N} {\phi_{AB} } + \frac{1}{2}\sum\limits_{B \ne A}^{N} {\frac{{q_{A}^{eff} q_{B}^{eff} }}{{R_{AB} }}}$$
(3.177)

where q A is the charge as obtained from (A3.1) to (A3.4) and \( q_{A}^{eff} \) is given by

$$q_{A}^{eff} = {\raise0.7ex\hbox{${q_{A} }$} \!\mathord{\left/ {\vphantom {{q_{A} } {s_{q} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${s_{q} }$}}$$
(3.178)

with s q given in Table 3.10.

Table 3.10 Potential parameters for the EDD-Q potential

Water

Water polymorphs are characterized by the formation of hydrogen bonds between neighboring water molecules. In this regard, in the EDD-Q formulation, the net atomic charge on oxygen and hydrogen atoms constituting a water monomer depends both on the two underlying OH bond distance(s) and HOH bond angle as well as the hydrogen bond distance between neighboring water monomers.

First, we consider the functional form for calculating atomic charges within a monomer (H1OH2) that consists of two OH bonds (rOH1 and rOH2) and a bond angle (θ) expressed in radians.

The charge (expressed in e) on the hydrogen atom (qH1) is given by

$$ \begin{aligned} q_{\rm{H1}} &= \left[ {\alpha (\theta )\exp ( - 2r_{\rm{OH1}} ) + \beta (\theta )r_{\rm{OH1}} \exp ( - r_{\rm{OH1}} ) + c(\theta )r_{\rm{OH1}} } \right]\sin^{2} (\theta ) \\ &\qquad + \,(r_{\rm{OH1}} - r_{\rm{OH2}} )d(\theta )\sin^{2} (\theta ), \\ \end{aligned} $$
(3.179)

where α, β, c, d are functions of θ (given below in (3.180)). The charge on the other hydrogen atom within a water monomer can also be obtained in a similar fashion.

$$ \begin{aligned} \alpha (\theta ) = \alpha_{1} \exp (\theta ) + \alpha_{2} \exp (\theta^{2} /4) + \alpha_{3} \theta \hfill \\ \beta (\theta ) = \beta_{1} \theta \exp ( - \theta ) + \beta_{2} \theta \exp ( - 2\theta ) + \beta_{3} \theta^{2} \hfill \\ c(\theta ) = c_{1} \theta \exp ( - \theta ) + c_{2} \theta \exp ( - 2\theta ) + c_{3} \hfill \\ d(\theta ) = d_{1} (\theta - \theta^{2} ) + d_{2} \theta^{3} \hfill \\ \end{aligned} $$
(3.180)

To prevent energy discontinuities at the neighbor cutoff distance (=1.5 Å), a switching function S(t) is used for modulating the calculated hydrogen charge as given below:

$$ \begin{aligned} q_{\rm{H1}} = q_{\rm{H1}} S(r_{\rm{OH1}} - t_{cut} ) \hfill \\ S(t) = 0.5(1 - \tan h (t/t_{1} )) \hfill \\ \end{aligned} $$
(3.181)

The charge on the oxygen atom in the water monomer is given by

$$ q_{\rm{O}} = - (q_{\rm{H1}} + q_{\rm{H2}} ). $$
(3.182)

The corresponding parameters for the water monomer charges are given in Table 3.11.

Table 3.11 Charge parameters for the water monomer

To account for charge transfer between neighboring monomers, a net intermolecular charge transfer (dq) between two monomers is obtained as follows:

$$ dq = a\exp ( - br_{\rm{HB}} ), $$
(3.183)

where r HB is the hydrogen bond distance between donor hydrogen atom and acceptor oxygen atoms belong to neighboring monomers respectively. The neighbor cutoff distance scut between two monomers is set to 2.5 Å and thus dq is modulated by the switching function S as defined before.

$$ dq = dqS(r_{\rm{HB}} - r_{im} ). $$
(3.184)

Further, dq is partitioned among the respective monomer atoms as follows:

$$\begin{aligned} dq^{{\text{O}}_{donor}} = - 0.5dq \hfill \\ dq^{{\text{O}}_{acceptor}} = 0.75dq \hfill \\ dq^{{\text{H}}_{donor}} = - 0.4dq \hfill \\ \end{aligned}$$
(3.185)

In addition, for the acceptor molecule, \(dq^{{\text{H}}_{acceptor}}\) is obtained by partitioning [\(dq - dq^{{\text{O}}_{acceptor}}\)] equally among the two hydrogen atoms, while within the donor molecule the other hydrogen atom acquires an additional charge equaling [\(dq^{{\text{O}}_{donor}} + dq^{{\text{H}}_{donor}} - dq]\).

Thus the total charge for any atom is given by a sum of its ‘monomer’ charge plus additional charge transfer that is acquired due to hydrogen bonding with neighboring monomers. Note that an equivalent dq arises for every hydrogen bonded interaction a monomer participates in Table 3.12.

Table 3.12 Water dimer charge parameters

Similar to the Hamiltonian defined for silica, the energy of an atom i is given by

$$\bar E_{A} = F(q_{A} ) + \frac{1}{2}\sum\limits_{B \ne A} {\Phi _{AB} } + \frac{1}{2}\sum\limits_{B \ne A} {\frac{{q_{A} q_{B} }}{{R_{AB} }}}$$
(3.186)

Here,

$$F(q_{A} ) = {\mathcal{A}}_{A}^{m} q_{A} \ln (q_{A}^{2} ) + {\mathcal{A}}_{A}^{d} dq_{A} \ln (dq_{A}^{2} )$$
(3.187)

For an oxygen atom, \( {\mathcal{A}}_{A}^{m} \) is defined in terms of the monomer bond angle and bond distances as follows:

$$ {\mathcal{A}}_{{\rm O}}^{m} = - 2A_{E{\rm O}} \sin^{2} (\theta )\exp \left( - \frac{{r_{0}^{2}}}{2}(r_{{\rm OH}1} - r_{{{\rm OH}}2} )^{2} \sin^{2} (\theta )\right), $$
(3.188)

while for a hydrogen atom, \( {\mathcal{A}}_{A}^{m} \) depends on the number of hydrogen bonds (L OH) that the hydrogen atom (H) is involved with. Further, the index ‘s’ in (3.189) refers to the oxygen atom in the monomer to which H is associated with. \( \theta_{u{{\rm H}}s} \) refers to the angle between the Os–H bond (within the monomer) and the respective hydrogen bonds that H forms with other Ou atoms that belong to neighboring monomers.

$${\mathcal{A}}_{\text{H}}^{m} = {\mathcal{A}}_{E\text{H}} \left(1 + \eta \sum\limits_{u = 1}^{{L_{\text{OH}} }}\right) {\left[ {\left( \exp \left( - 2\left(1 + \cos \left(\theta_{u\text{H}s} \right)\right)^{2} \right)\right)\left( {1 - \tan h \left(\frac{{r_{u\text{H}} - r_{D} }}{{t_{2} }}\right)} \right)} \right]} .$$
(3.189)

Finally, \( \Phi _{ij} \) is given below:

$$\begin{aligned}\Phi _{\text{OO}} & = a_{\text{OO}} \exp ( - 4r_{\text{OO}} ) \\ \Phi _{\text{OH}} & = 2\left[ {a_{\text{OH}} r_{\text{OH}} + b_{\text{OH}} \exp ( - r_{\text{OH}} ) + \frac{{C_{\text{OH}} }}{{r_{\text{OH}}^{24} }}} \right]S(r_{\text{OH}} - r_{cut} ) \\ \Phi _{\text{HH}} & = 2a_{\text{HH}} \exp ( - 2r_{\text{HH}} )S(r_{\text{HH}} - H_{cut} ). \\ \end{aligned}$$
(3.190)

Tables 3.13 and 3.14 provides the corresponding potential parameters.

Table 3.13 Potential parameters (part I)
Table 3.14 Potential parameters (part II)

For the two systems, the charge and the other potential parameters, while parameterized with respect to ab initio data, were selected in an ad hoc fashion. In order to provide a more streamlined approach, a more systematic approach leading to a more intuitive functional form is proposed as noted below. Future development of EDD-Q potentials will be based on these functional forms (3.1913.199).

As discussed before, for a bond formed between atoms A and B, the bond-charge (\(q_{AB}^{bond}\)) is a function of the number of nearest neighbors of A(\(L_{A}\)) and B(\(L_{B}\)), the interatomic distance (\(R_{AB}\)), and the bond-angles that arise due to the remaining nearest neighbors of A and B (\(\theta_{BAC}\) and \(\theta_{ABC'}\)), where C and C′ represent the neighbors of A and B respectively. Note the qualitative similarity of the functional forms for charges (3.1913.198) to the multipole expansion used commonly to express the electrostatic potentials that arise from a distribution of charges.

$$q_{A} = \sum\limits_{B = 1}^{{L_{A} }} {q_{AB}^{bond} }$$
(3.191)
$$q_{AB}^{bond} = \left[ {q_{AB} + q_{BA} } \right]$$
(3.192)
$$q_{AB} = \frac{1}{2}\left[ {\frac{1}{{L_{A} }}q_{AB}^{S} (R_{AB} ) + \sum\limits_{C \ne B}^{{L_{A} }} {\Delta q(R_{AB} ,\theta_{BAC} )} } \right]$$
(3.193)
$${\text{if}}\, L_{A} = 1,\ q_{AB} = q_{BA}$$
$$q_{AB}^{S} (R_{AB} ) = \sum\limits_{p} {\frac{{\mathcal{A}_{p} }}{{R_{AB}^{p} }}} ;p > 2$$
(3.194)
$$\Delta q(R_{AB} ,\theta_{BAC} ) = f^{A} (\theta_{BAC} ,R_{AB} ) + g^{A} (R_{AB})$$
(3.195)
$$f^{A} (\theta ,r) = w^{A} (\theta )y(r)$$
(3.196)
$$w^{A} (\theta) = \left[ {u_{A}^{f} + \sum\limits_{p} {C_{p}^{A} } \cos^{p} (p\theta );p > 0} \right] \,$$
(3.197)
$$y(R) = \left[ {u_{A}^{e} + \sum\limits_{p} {\frac{{B_{p} }}{{R_{AB}^{p} }};p > 2} } \right]$$
$$g^{A} (r) = u_{A}^{g} + \sum\limits_{p} {\frac{{D_{p}^{A} }}{{R_{AB}^{p} }};p > 2}$$
(3.198)

The EDD-Q Hamiltonian which consists of a Coulombic term, a 2-body term (ɸ) and an embedding term (F(q)) are given below. F(q) consists of three contributions; the most important of the three terms is the second term, which can be correlated to the ‘energy-cost’ for embedding a bond that is formed between pairs of atoms.

$$\begin{aligned} \bar E & = \sum\limits_{A} {\bar E_{A} } \\ \bar E_{A} & = \frac{1}{2}\sum\limits_{B \ne A} {\frac{{q_{A} q_B}}{{R_{AB} }} + } F(q_{A} ) + \frac{1}{2}\sum\limits_{B \ne A} {\phi_{AB} (R_{AB} )} \\ F(q_{A} ) & = M_{1} q_{A}^{2} \ln (q_{A}^{2} ) + M_{2} \sum\limits_{B \ne A} {q_{AB} \ln (q_{AB}^{2} )} + M_{3} \sum\limits_{B \ne A} {h_{AB} q_{AB}^{2} \ln (q_{AB}^{2} )} \\ h_{AB} & = \sum\limits_{C \ne B}^{L_{A}} {\left[ {1 - \left( {h^{(1)} \cos (\theta_{BAC} ) + h^{(2)} \cos (2\theta_{BAC} ) + h^{(3)} \cos (3\theta_{BAC} )} \right)} \right]} \\ \phi_{AB} & = \frac{{T_{AB} }}{{R_{AB}^{12} }} - \frac{{S_{AB} }}{{R_{AB}^{6} }} \\ \end{aligned}$$
(3.199)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valone, S.M., Muralidharan, K., Runge, K. (2016). Interatomic Potentials Including Chemistry. In: Deymier, P., Runge, K., Muralidharan, K. (eds) Multiscale Paradigms in Integrated Computational Materials Science and Engineering. Springer Series in Materials Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-24529-4_3

Download citation

Publish with us

Policies and ethics