Abstract
There has been a tremendous increase in medical image computing research and development over the last decade. This trend continues to gain further speed, driven by the sheer amount of multimodal medical image data but also by the broad spectrum of computer-assisted applications. At the same time, user expectations with respect to diagnostic accuracy, robustness, speed, automation, workflow efficiency, broad availability, as well as intuitive use have reached a high level already. More recently, cloud computing has entered the field of medical imaging, providing means for more flexible workflows including the support of mobile devices and even a medical imaging equivalent of the App Store paradigm. This paper discusses requirements for modern medical software systems with a focus on image analysis and visualization. It provides examples from different areas of application covering collaborative multi-center imaging trials with online reading and advanced analysis as well as an intraoperative augmented-reality scenario for translating liver surgery planning data directly into the operating room through a mobile multi-touch device. A combination of remote rendering and visualization techniques with an efficient modular development framework (MeVisLab) is presented as a basis for fast implementation, early evaluation, and iterative optimization in these applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bamberg, F., Kauczor, H.U., Weckbach, S., et al. Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1), 206–220 (2015)
Bethel, W.: Visualizaton dot com. Comput. Graph. Appl. 20(3), 17–20 (2000)
Bitter, I., van Uitert, R., Wolf, I., et al. Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Trans. Vis. Comput. Graph. 13(3), 483–493 (2007)
Caban, J.J., Joshi, A., Nagy, P.: Rapid development of medical imaging tools with open-source libraries. J. Digit Imag. 20(Suppl. 1), 83–93 (2007)
DCMTK - DICOM Toolkit. http://dcmtk.org/dcmtk.php.en (2015). Accessed 10 Nov 2015
dcm4che. http://www.dcm4che.org (2015). Accessed 10 Nov 2015
Engel, K., Sommer, O., Ertl, T.: Framework for interactive hardware accelerated remote 3D-visualization. In: de Leeuw, W., van Liere, R.: (eds.) Data Visualization, pp. 167–177. Springer, Vienna (2000)
Fette, I., Melnikov, A.: The WebSocket Protocol. http://tools.ietf.org/html/rfc6455 (2011). Accessed 10 Nov 2015
Hahn, H.K., Link, F., Peitgen, H.-O.: Concepts for rapid application prototyping in medical image analysis and visualization. In: Proceedings of Simulation and Visualization, pp. 283–298. SCS Publishing House, Ghent (2003)
Hendin, O., John, N.W., Shochet, O.: Medical volume rendering over the WWW using VRML and JAVA. In: Westwood, J.D., Hoffman, H.M., Stredney, D., et al. (eds.) Proceedings of Medicine Meets Virtual Reality, vol. 6, pp. 34–40. IOS Press and Ohmsha, Amsterdam (1998)
Introducing JSON. http://www.json.org (2015). Accessed 10 Nov 2015
Insight Segmentation and Registration Toolkit (2015). www.itk.org. Accessed 10 Nov 2015
Kagadis, G.C., Kloukinas, C., Moore, K., et al.: Cloud computing in medical imaging. Med. Phys. 40(7), 070901 (2013)
Köhn, A., Matsuyama, R., Endo, I., et al. Liver surgery data and augmented reality in the operation room: experiences using a tablet device. Int. J. Comput. Assist. Radiol. Surg. 9(Supplement 1), 111 (2014)
König, M., Spindler, W., Rexilius, J., et al. Embedding VTK and ITK into a visual programming and rapid prototyping platform. In: Cleary, K.R., Galloway Jr, R.L. (eds.) Proceedings of SPIE Medical Imaging, vol. 6141, San Diego, 2006, pp. 796–806 (2006)
Lamberti, F., Sanna, A.: A streaming-based solution for remote visualization of 3D graphics on mobile devices. IEEE Tran Vis Comput Graph 13(2), 247–260 (2007)
Link, F., König, M., Peitgen, H.-O.: Multi-resolution volume rendering with per object shading. In: Kobbelt, L., Kuhlen, T., Aach, T., et al. (eds.) Proceedings of Vision, Modeling, and Visualization, pp. 185–191. AKA, Berlin (2006)
Lippert, L., Gross, M.H., Kurmann, C.: Compression domain volume rendering for distributed environments. Comput. Graph. Forum 16(3), C95–C107 (1997)
Ma, K.-L., Camp, D.M.: High performance visualization of time-varying volume data over a wide-area network. In: Proceedings of Supercomputing ’00. IEEE Computer Society, Los Alamitos (2000)
Matsuyama, R., Taniguchi, K., Mori, R, et al.: IPad guided right hemihepatectomy with a new application designed specifically for navigation surgery: initially clinical experience for perihilar cholangiocarcinoma. In: IHPBA World Congress 2014 (2014)
MeVisLab. http://www.mevislab.de (2015). Accessed 10 Nov 2015
MySQL. http://www.mysql.com (2015). Accessed 10 Nov 2015
OpenGL. http://www.opengl.org (2015). Accessed 10 Nov 2015
OpenGL Vizserver. http://www.sgi.com/products/software/vizserver (2015). Accessed 10 Nov 2015
Ormerod, D.F., Ross, B., Naluai-Cecchini, A.: Use of an augmented reality display of patient monitoring data to enhance anesthesiologists’ response to abnormal clinical events. Stud. Health Technol. Inform. 94, 248–250 (2003)
Paul, B., Ahern, S., Bethel, E.W., et al. Chromium renderserver: scalable and open remote rendering infrastructure. IEEE Trans. Vis. Comput. Graph. 14(3), 627–639 (2008)
Prior, F.W., Erickson, B.J., Tarbox, L.: Open source software projects of the caBIG In Vivo Imaging Workspace Software special interest group. J. Digit Imag. 20(Suppl. 1), 94–100 (2007)
Rassweiler, J.J., Müller, M., Fangerau, M., et al. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61(3), 628–631 (2012)
Reitinger, B:, Bornik, A., Beichel, R., et al. Tools for augmented-reality-based liver resection planning. In: Galloway Jr, R.L. (ed.) Proceedings of SPIE Medical Imaging, vol. 5367, San Diego, pp. 88–99 (2004)
Richardson, T., Stafford-Fraser, Q., Wood, K.R., et al. Virtual network computing. IEEE Internet Comput. 2(1), 33–38 (1998)
Rieder, C., Palmer, S., Link, F., et al.: A shader framework for rapid prototyping of GPU-based volume rendering. Comput Graph Forum 30(3), 1031–1040 (2011)
Ritter, F., Boskamp, T., Homeyer, A., et al.: Medical image analysis: a visual approach. IEEE Pulse 2(6), 60–70 (2011)
Rost, R.J., Licea-Kane, B.M., Ginsburg, D., et al.: OpenGL Shading Language, 3rd ed. Addison-Wesley Professional, Boston (2009)
SATMED E-Health Platform. http://satmed.lu (2015). Accessed 10 Nov 2015
Schenk, A., Haemmerich, D., Preusser, T.: Planning of image-guided interventions in the liver. IEEE Pulse 2(5), 48–55 (2011)
SGI Open Inventor. http://oss.sgi.com/projects/inventor (2015). Accessed 10 Nov 2015
Stegmaier, S., Magallón, E.T.: A generic solution for hardware-accelerated remote visualization. In: Ebert, D., Brunet, P., Navazo, I. (eds.) Proceedings of EG/IEEE TCVG Symposium on Visualization, pp. 87–94. ACM, New York (2002)
T-Systems Trial Connect. https://www.telekom-healthcare.com/en/hospitals/healthcare-content-management/trial-connect/data-management-system-for-managing-study-data-32016 (2015). Accessed 10 Nov 2015
VirtualGL. http://www.virtualgl.org (2015). Accessed 10 Nov 2015
Visualization Toolkit (VTK). http://www.vtk.org (2015). Accessed 10 Nov 2015
Weiler, F., Rieder, C., David, C.A., et al.: On the value of multi-volume visualization for preoperative planning of cerebral AVM surgery. In: Ropinski, T., Ynnerman, A., Botha, C.P., et al. (eds.) Proceedings or the Eurographics Workshop on Visual Computing for Biomedicine. Eurographics Association, Norrköping, pp. 49–56 (2012)
Yoon, I., Neumann, U.: Web-based remote rendering with IBRAC. Comput. Graph. Forum 19(3), 321–330 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kohlmann, P. et al. (2016). Remote Visualization Techniques for Medical Imaging Research and Image-Guided Procedures. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-24523-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24521-8
Online ISBN: 978-3-319-24523-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)