Skip to main content

Remote Visualization Techniques for Medical Imaging Research and Image-Guided Procedures

  • Conference paper
  • First Online:
Visualization in Medicine and Life Sciences III

Abstract

There has been a tremendous increase in medical image computing research and development over the last decade. This trend continues to gain further speed, driven by the sheer amount of multimodal medical image data but also by the broad spectrum of computer-assisted applications. At the same time, user expectations with respect to diagnostic accuracy, robustness, speed, automation, workflow efficiency, broad availability, as well as intuitive use have reached a high level already. More recently, cloud computing has entered the field of medical imaging, providing means for more flexible workflows including the support of mobile devices and even a medical imaging equivalent of the App Store paradigm. This paper discusses requirements for modern medical software systems with a focus on image analysis and visualization. It provides examples from different areas of application covering collaborative multi-center imaging trials with online reading and advanced analysis as well as an intraoperative augmented-reality scenario for translating liver surgery planning data directly into the operating room through a mobile multi-touch device. A combination of remote rendering and visualization techniques with an efficient modular development framework (MeVisLab) is presented as a basis for fast implementation, early evaluation, and iterative optimization in these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bamberg, F., Kauczor, H.U., Weckbach, S., et al. Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1), 206–220 (2015)

    Article  Google Scholar 

  2. Bethel, W.: Visualizaton dot com. Comput. Graph. Appl. 20(3), 17–20 (2000)

    Article  Google Scholar 

  3. Bitter, I., van Uitert, R., Wolf, I., et al. Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Trans. Vis. Comput. Graph. 13(3), 483–493 (2007)

    Article  Google Scholar 

  4. Caban, J.J., Joshi, A., Nagy, P.: Rapid development of medical imaging tools with open-source libraries. J. Digit Imag. 20(Suppl. 1), 83–93 (2007)

    Article  Google Scholar 

  5. DCMTK - DICOM Toolkit. http://dcmtk.org/dcmtk.php.en (2015). Accessed 10 Nov 2015

  6. dcm4che. http://www.dcm4che.org (2015). Accessed 10 Nov 2015

  7. Engel, K., Sommer, O., Ertl, T.: Framework for interactive hardware accelerated remote 3D-visualization. In: de Leeuw, W., van Liere, R.: (eds.) Data Visualization, pp. 167–177. Springer, Vienna (2000)

    Google Scholar 

  8. Fette, I., Melnikov, A.: The WebSocket Protocol. http://tools.ietf.org/html/rfc6455 (2011). Accessed 10 Nov 2015

  9. Hahn, H.K., Link, F., Peitgen, H.-O.: Concepts for rapid application prototyping in medical image analysis and visualization. In: Proceedings of Simulation and Visualization, pp. 283–298. SCS Publishing House, Ghent (2003)

    Google Scholar 

  10. Hendin, O., John, N.W., Shochet, O.: Medical volume rendering over the WWW using VRML and JAVA. In: Westwood, J.D., Hoffman, H.M., Stredney, D., et al. (eds.) Proceedings of Medicine Meets Virtual Reality, vol. 6, pp. 34–40. IOS Press and Ohmsha, Amsterdam (1998)

    Google Scholar 

  11. Introducing JSON. http://www.json.org (2015). Accessed 10 Nov 2015

  12. Insight Segmentation and Registration Toolkit (2015). www.itk.org. Accessed 10 Nov 2015

  13. Kagadis, G.C., Kloukinas, C., Moore, K., et al.: Cloud computing in medical imaging. Med. Phys. 40(7), 070901 (2013)

    Article  Google Scholar 

  14. Köhn, A., Matsuyama, R., Endo, I., et al. Liver surgery data and augmented reality in the operation room: experiences using a tablet device. Int. J. Comput. Assist. Radiol. Surg. 9(Supplement 1), 111 (2014)

    Google Scholar 

  15. König, M., Spindler, W., Rexilius, J., et al. Embedding VTK and ITK into a visual programming and rapid prototyping platform. In: Cleary, K.R., Galloway Jr, R.L. (eds.) Proceedings of SPIE Medical Imaging, vol. 6141, San Diego, 2006, pp. 796–806 (2006)

    Google Scholar 

  16. Lamberti, F., Sanna, A.: A streaming-based solution for remote visualization of 3D graphics on mobile devices. IEEE Tran Vis Comput Graph 13(2), 247–260 (2007)

    Article  Google Scholar 

  17. Link, F., König, M., Peitgen, H.-O.: Multi-resolution volume rendering with per object shading. In: Kobbelt, L., Kuhlen, T., Aach, T., et al. (eds.) Proceedings of Vision, Modeling, and Visualization, pp. 185–191. AKA, Berlin (2006)

    Google Scholar 

  18. Lippert, L., Gross, M.H., Kurmann, C.: Compression domain volume rendering for distributed environments. Comput. Graph. Forum 16(3), C95–C107 (1997)

    Article  Google Scholar 

  19. Ma, K.-L., Camp, D.M.: High performance visualization of time-varying volume data over a wide-area network. In: Proceedings of Supercomputing ’00. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  20. Matsuyama, R., Taniguchi, K., Mori, R, et al.: IPad guided right hemihepatectomy with a new application designed specifically for navigation surgery: initially clinical experience for perihilar cholangiocarcinoma. In: IHPBA World Congress 2014 (2014)

    Google Scholar 

  21. MeVisLab. http://www.mevislab.de (2015). Accessed 10 Nov 2015

  22. MySQL. http://www.mysql.com (2015). Accessed 10 Nov 2015

  23. OpenGL. http://www.opengl.org (2015). Accessed 10 Nov 2015

  24. OpenGL Vizserver. http://www.sgi.com/products/software/vizserver (2015). Accessed 10 Nov 2015

  25. Ormerod, D.F., Ross, B., Naluai-Cecchini, A.: Use of an augmented reality display of patient monitoring data to enhance anesthesiologists’ response to abnormal clinical events. Stud. Health Technol. Inform. 94, 248–250 (2003)

    Google Scholar 

  26. Paul, B., Ahern, S., Bethel, E.W., et al. Chromium renderserver: scalable and open remote rendering infrastructure. IEEE Trans. Vis. Comput. Graph. 14(3), 627–639 (2008)

    Article  Google Scholar 

  27. Prior, F.W., Erickson, B.J., Tarbox, L.: Open source software projects of the caBIG In Vivo Imaging Workspace Software special interest group. J. Digit Imag. 20(Suppl. 1), 94–100 (2007)

    Article  Google Scholar 

  28. Rassweiler, J.J., Müller, M., Fangerau, M., et al. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61(3), 628–631 (2012)

    Article  Google Scholar 

  29. Reitinger, B:, Bornik, A., Beichel, R., et al. Tools for augmented-reality-based liver resection planning. In: Galloway Jr, R.L. (ed.) Proceedings of SPIE Medical Imaging, vol. 5367, San Diego, pp. 88–99 (2004)

    Google Scholar 

  30. Richardson, T., Stafford-Fraser, Q., Wood, K.R., et al. Virtual network computing. IEEE Internet Comput. 2(1), 33–38 (1998)

    Article  Google Scholar 

  31. Rieder, C., Palmer, S., Link, F., et al.: A shader framework for rapid prototyping of GPU-based volume rendering. Comput Graph Forum 30(3), 1031–1040 (2011)

    Article  Google Scholar 

  32. Ritter, F., Boskamp, T., Homeyer, A., et al.: Medical image analysis: a visual approach. IEEE Pulse 2(6), 60–70 (2011)

    Article  Google Scholar 

  33. Rost, R.J., Licea-Kane, B.M., Ginsburg, D., et al.: OpenGL Shading Language, 3rd ed. Addison-Wesley Professional, Boston (2009)

    Google Scholar 

  34. SATMED E-Health Platform. http://satmed.lu (2015). Accessed 10 Nov 2015

  35. Schenk, A., Haemmerich, D., Preusser, T.: Planning of image-guided interventions in the liver. IEEE Pulse 2(5), 48–55 (2011)

    Article  Google Scholar 

  36. SGI Open Inventor. http://oss.sgi.com/projects/inventor (2015). Accessed 10 Nov 2015

  37. Stegmaier, S., Magallón, E.T.: A generic solution for hardware-accelerated remote visualization. In: Ebert, D., Brunet, P., Navazo, I. (eds.) Proceedings of EG/IEEE TCVG Symposium on Visualization, pp. 87–94. ACM, New York (2002)

    Google Scholar 

  38. T-Systems Trial Connect. https://www.telekom-healthcare.com/en/hospitals/healthcare-content-management/trial-connect/data-management-system-for-managing-study-data-32016 (2015). Accessed 10 Nov 2015

  39. VirtualGL. http://www.virtualgl.org (2015). Accessed 10 Nov 2015

  40. Visualization Toolkit (VTK). http://www.vtk.org (2015). Accessed 10 Nov 2015

  41. Weiler, F., Rieder, C., David, C.A., et al.: On the value of multi-volume visualization for preoperative planning of cerebral AVM surgery. In: Ropinski, T., Ynnerman, A., Botha, C.P., et al. (eds.) Proceedings or the Eurographics Workshop on Visual Computing for Biomedicine. Eurographics Association, Norrköping, pp. 49–56 (2012)

    Google Scholar 

  42. Yoon, I., Neumann, U.: Web-based remote rendering with IBRAC. Comput. Graph. Forum 19(3), 321–330 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst K. Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kohlmann, P. et al. (2016). Remote Visualization Techniques for Medical Imaging Research and Image-Guided Procedures. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_6

Download citation

Publish with us

Policies and ethics