Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 503 Accesses

Abstract

This chapter introduces the concept of Coulomb explosion imaging (CEI), which is central to the work presented in Chaps. 6 and 7. The important principles upon which the technique is based are described, and the current capabilities and limitations of such experiments are discussed in the context of recent work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ullrich, A. Rudenko, R. Moshammer, Annu. Rev. Phys. Chem. 63, 635 (2012)

    Article  CAS  Google Scholar 

  2. R. Neutze, R. Wouts, E. Weckert, D. van der Spoel, J. Hajdu, Nature 406, 752 (2000)

    Article  CAS  Google Scholar 

  3. S.P. Hau-Riege, R.A. London, A. Szoke, Phys. Rev. E 69, 051906 (2004)

    Article  Google Scholar 

  4. M.M. Seibert et al., Nature 470, 78 (2011)

    Article  CAS  Google Scholar 

  5. T. Gorkhover et al., Phys. Rev. Lett. 108, 245005 (2012)

    Article  CAS  Google Scholar 

  6. N.D. Loh et al., Nature 486, 513 (2012)

    Article  CAS  Google Scholar 

  7. S. Kassemeyer et al., Opt. Express 20, 4149 (2012)

    Article  Google Scholar 

  8. H.N. Chapman et al., Nature 470, 73 (2011)

    Article  CAS  Google Scholar 

  9. A. Barty et al., Nature Photonics 6, 35 (2012)

    Article  CAS  Google Scholar 

  10. L. Lomb et al., Phys. Rev. B 84, 214111 (2011)

    Article  Google Scholar 

  11. A. Barty et al., Opt. Express 17, 15508 (2009)

    Article  CAS  Google Scholar 

  12. E.P. Kanter et al., Phys. Rev. A 20, 834 (1979)

    Article  CAS  Google Scholar 

  13. Z. Vager, R. Naaman, E. Kanter, Science 244, 426 (1989)

    Article  CAS  Google Scholar 

  14. U. Werner, K. Beckord, J. Becker, H. Lutz, Phys. Rev. Lett. 74, 1962 (1995)

    Article  CAS  Google Scholar 

  15. P. Baltzer, L. Karlsson, Phys. Rev. A 38, 2322 (1988)

    Article  CAS  Google Scholar 

  16. H. Winick, Synchrotron Radiation Sources: A Primer, vol. 1, Series on Synchrotron Radiation Techniques and Applications (World Scientific, London, 1994)

    Google Scholar 

  17. L. Young et al., Nature 466, 56 (2010)

    Article  CAS  Google Scholar 

  18. G. Doumy et al., Phys. Rev. Lett. 106, 083002 (2011)

    Article  CAS  Google Scholar 

  19. B. Rudek et al., Nat. Photonics 6, 858 (2012)

    Article  CAS  Google Scholar 

  20. M. Hoener et al., Phys. Rev. Lett. 104, 253002 (2010)

    Article  CAS  Google Scholar 

  21. J.P. Cryan et al., Phys. Rev. Lett. 105, 083004 (2010)

    Article  Google Scholar 

  22. N. Berrah et al., Proc. Natl. Acad. Sci. USA 108, 16912 (2011)

    Article  CAS  Google Scholar 

  23. S. Schorb et al., Phys. Rev. Lett. 108, 233401 (2012)

    Article  Google Scholar 

  24. B.M.D. Erk, Fragmentation dynamics of small molecules upon multiple ionization by X-Ray free-electron laser pulses, Ph.D. thesis, Ruperto-Carola-University of Heidelberg, Germany 2013

    Google Scholar 

  25. J.L. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001)

    Article  CAS  Google Scholar 

  26. M. Coville, T.D. Thomas, Phys. Rev. A 43, 6053 (1991)

    Article  CAS  Google Scholar 

  27. I. Nenner, P. Morin, VUV and Soft X-Ray Photoionization, 1st edn. (Springer, New York City, 1996)

    Google Scholar 

  28. K. Codling, L. Frasinski, J. Phys. B 26, 783 (1993)

    Article  CAS  Google Scholar 

  29. J. Gagnon, K.F. Lee, D.M. Rayner, P.B. Corkum, V.R. Bhardwaj, J. Phys. B 41, 215104 (2008)

    Article  Google Scholar 

  30. M. Pitzer, M. Kunitski, A.S. Johnson, T. Jahnke, H. Sann, F. Sturm, L.P.H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, M.S. Schöffler, Science 341, 1096 (2013)

    Article  CAS  Google Scholar 

  31. A. Hishikawa, A. Iwamae, K. Hoshina, M. Kono, K. Yamanouchi, Chem. Phys. Lett. 282, 283 (1998)

    Article  CAS  Google Scholar 

  32. J.H. Sanderson et al., Phys. Rev. A 59, R2567 (1999)

    Google Scholar 

  33. A. Baltuska, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, Opt. Lett. 22, 102 (1997)

    Article  CAS  Google Scholar 

  34. A. Rudenko, Th Ergler, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer, J. Ullrich, Chem. Phys. 329, 193 (2006)

    Article  CAS  Google Scholar 

  35. T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 97, 193001 (2006)

    Article  Google Scholar 

  36. F. Légaré, K.F. Lee, I.V. Litvinyuk, P.W. Dooley, S.S. Wesolowski, P.R. Bunker, P. Dombi, F. Krausz, A.D. Bandrauk, D.M. Villeneuve, P.B. Corkum, Phys. Rev. A 71, 013415 (2005)

    Google Scholar 

  37. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    Google Scholar 

  38. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln 84, 457 (1927)

    CAS  Google Scholar 

  39. S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989)

    Article  CAS  Google Scholar 

  40. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994)

    Article  CAS  Google Scholar 

  41. A. Talebpour, S. Larochelle, S.L. Chin, J. Phys. B 31, L49 (1998)

    Google Scholar 

  42. M. Lezius, V. Blanchet, D.M. Rayner, D.M. Villeneuve, A. Stolow, MYu. Ivanov, Phys. Rev. Lett. 86, 51 (2001)

    Article  CAS  Google Scholar 

  43. A. Faibis, W. Koenig, E. Kanter, Z. Vager, Nucl. Instrum. Meth. B 13, 673 (1986)

    Article  Google Scholar 

  44. J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, J. Chem. Phys. 111, 1 (1999)

    Article  CAS  Google Scholar 

  45. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003)

    Article  CAS  Google Scholar 

  46. B. Friedrich, D.P. Pullman, D.R. Herschbach, J. Phys. Chem. 95, 8118 (1991)

    Article  CAS  Google Scholar 

  47. J.J. Omiste, M. Gärttner, P. Schmelcher, R. González-Férez, L. Holmegaard, J.H. Nielsen, H. Stapelfeldt, J. Küpper, Phys. Chem. Chem. Phys. 13, 18815 (2011)

    Article  CAS  Google Scholar 

  48. T. Seideman, J. Chem. Phys. 103, 7887 (1995)

    Article  CAS  Google Scholar 

  49. J. Ortigoso, M. Rodríguez, M. Gupta, B. Friedrich, J. Chem. Phys. 110, 3870 (1999)

    Article  CAS  Google Scholar 

  50. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  CAS  Google Scholar 

  51. W. Kim, P. Felker, J. Chem. Phys. 104, 1147 (1996)

    Article  CAS  Google Scholar 

  52. B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)

    Article  CAS  Google Scholar 

  53. J.L. Hansen, Imaging molecular frame dynamics using spatially oriented molecules, Ph.D. thesis, Aarhus University, 2012

    Google Scholar 

  54. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Education, New Jersey, 2005)

    Google Scholar 

  55. V. Kumarappan, C.Z. Bisgaard, S.S. Viftrup, L. Holmegaard, H. Stapelfeldt, J. Chem. Phys. 125, 194309 (2006)

    Article  Google Scholar 

  56. L. Holmegaard, J.H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Kpper, G. Meijer, Phys. Rev. Lett. 102, 023001 (2009)

    Google Scholar 

  57. T. Seideman, E. Hamilton, Adv. At. Mol. Opt. Phys. 52, 289 (2005)

    Article  CAS  Google Scholar 

  58. C.Z. Bisgaard, Laser induced alignment; towards fixed-in-space molecules, Ph.D. thesis, University of Aarhus, Denmark, 2006

    Google Scholar 

  59. I.S. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)

    Article  CAS  Google Scholar 

  60. M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003)

    Article  CAS  Google Scholar 

  61. M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. A 69, 013402 (2004)

    Google Scholar 

  62. J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 85, 2470 (2000)

    Article  CAS  Google Scholar 

  63. K.F. Lee, D.M. Villeneuve, P.B. Corkum, A. Stolow, J.G. Underwood, Phys. Rev. Lett. 97, 173001 (2006)

    Article  Google Scholar 

  64. S.S. Viftrup, V. Kumarappan, S. Trippel, H. Stapelfeldt, E. Hamilton, T. Seideman, Phys. Rev. Lett. 99, 143602 (2007)

    Article  Google Scholar 

  65. S.S. Viftrup, V. Kumarappan, L. Holmegaard, C.Z. Bisgaard, H. Stapelfeldt, M. Artamonov, E. Hamilton, T. Seideman, Phys. Rev. A 79, 023404 (2009)

    Google Scholar 

  66. J.J. Larsen, Laser induced alignment of neutral molecules, Ph.D. thesis, University of Aarhus, Denmark, 2000

    Google Scholar 

  67. I. Nevo, L. Holmegaard, J.H. Nielsen, J.L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, J. Kpper, Phys. Chem. Chem. Phys. 11, 9912 (2009)

    Article  CAS  Google Scholar 

  68. J.L. Hansen, J.H. Nielsen, C.B. Madsen, A.T. Lindhardt, M.P. Johansson, T. Skrydstrup, L.B. Madsen, H. Stapelfeldt, J. Chem. Phys. 136, 204310 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Slater .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Slater, C.S. (2016). Principles of Coulomb Explosion Imaging. In: Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24517-1_5

Download citation

Publish with us

Policies and ethics