Skip to main content

Introduction to Depletion Interaction and Colloidal Phase Behaviour

  • Chapter
  • First Online:
Soft Matter at Aqueous Interfaces

Part of the book series: Lecture Notes in Physics ((LNP,volume 917))

Abstract

Efforts to explain physical properties of colloidal suspensions in terms of the forces that act between the colloidal particles go back to the beginning of the 20th century. In the second half of the last century theoretical progress clarified that the stability of colloidal particles is also affected by non-adsorbing polymers in solution, as first explained by Asakura and Oosawa in Japan using the excluded and free volume concepts. Here an introduction to the depletion interaction and resulting phase behaviour in colloidal suspensions is provided. The theory for the phase behaviour of colloidal dispersions is developed here starting from the Van der Waals theory for the as-liquid phase transition. Subsequently, the hard sphere fluid-solid phase transition is explained. Next, an attractive Yukawa hard-core model is used to outline the effects of varying the range of attraction on the phase behaviour of a colloidal suspension of attractive particles. Finally, the phase states that can be found in a colloidal hard sphere dispersion plus depletants are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The quantity \(n_{b}^{*}\) is the bulk polymer number density at which the polymer coils overlap. In terms of the volume fraction of polymer segments \(\varphi\) (\(0 \le \varphi \le 1\)), one then uses \(\phi_{p} = \varphi /\varphi^{*}\), with \(\varphi^{*}\) the segment volume fraction at which the chains start to overlap: \(\varphi^{*} = N_{p} v_{s} /v_{p}\), where \(N_{p}\) is the number of segments per polymer chain, \(v_{s}\) is the monomer (segment) volume, and \(v_{p} = (4\pi /3)R_{g}^{3}\) the coil volume, so \(\varphi^{*} { \sim }N_{p} /R_{g}^{3}\). The overlap number density \(n_{b}^{*}\) hence follows as \(n_{b}^{*}\) = \(3/(4\pi R_{g}^{3} )\).

  2. 2.

    A smooth transition between these forms is:

    $$V_{\text{ov}} (r) = \frac{2\pi }{3}(R_{d} - r/2)^{2} (2R_{d} + r/2).$$

    .

  3. 3.

    \(\varLambda = h/\sqrt {2\pi m_{\text{c}} k_{B} T}\), with the colloid mass \(m_{\text{c}}\) and Planck’s constant \(h\).

  4. 4.

    the ‘0’ refers to hard spheres and the subscript ‘f’ indicates a fluid phase.

  5. 5.

    The term Yukawa potential originally stems stems from the quantum mechanical theory of nuclear interactions. In a more general context, it is often used for potentials with a distance profile of the type \(\exp \{ - \kappa r\} /r\).

  6. 6.

    Although here only Yukawa attractions are considered this description also holds for spheres interacting through a hard-core repulsive Yukawa interaction.

  7. 7.

    This can be regarded as an explicit definition for \(\gamma\) within the van der Waals model when the attraction is described as a long-ranged Yukawa attraction.

References

  1. F. Oosawa. Hyo-Hyo Rakugaku. Autobiography, Nagoya, 2005

    Google Scholar 

  2. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    Article  ADS  Google Scholar 

  3. D.H. Napper, Polymeric Stabilization of Colloidal Dispersions (Academix Press, Oxford, 1983)

    Google Scholar 

  4. As explained by Oosawa during the “Nagoya Symposium on Depletion Forces: Celebrating the 60th anniversary of the Asakura-Oosawa theory” held on March 14 and Japan 15 in 2014 in Nagoya

    Google Scholar 

  5. A. Vrij, Pure Appl. Chem. 48, 471 (1976)

    Article  Google Scholar 

  6. S. Asakura, F. Oosawa, J. Pol. Sci. 33, 183 (1958)

    Article  ADS  Google Scholar 

  7. R. Li-In-On, B. Vincent, F.A. Waite, ACS Symp. Ser. 9, 165 (1975)

    Article  Google Scholar 

  8. E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983)

    Article  ADS  Google Scholar 

  9. A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E 59, 6853 (1999)

    Article  ADS  Google Scholar 

  10. G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromolecules 36, 7857 (2003)

    Article  ADS  Google Scholar 

  11. H. De Hek, A. Vrij, J. Colloid Interface Sci. 84, 409 (1981)

    Article  Google Scholar 

  12. R. Fåhraeus, Physiol. Rev. 9, 241 (1929)

    Google Scholar 

  13. R. Fåhraeus, Acta. Med. Scand. 55, 1 (1921)

    Google Scholar 

  14. J.E. Thysegen, Acta Med. Scand. Suppl. 134, 1 (1942)

    Google Scholar 

  15. J. Traube, Gummi Zeitung 39, 434 (1925)

    Google Scholar 

  16. H.C. Baker, Inst. Rubber Ind. 13, 70 (1937)

    Google Scholar 

  17. C.F. Vester, Kolloid Z. 84, 63 (1938)

    Article  Google Scholar 

  18. E. Dickinson, Food Hydrocolloids 17, 25 (2003)

    Article  Google Scholar 

  19. C. Sieglaff, J. Polym. Sci. 41, 319 (1959)

    Article  ADS  Google Scholar 

  20. C. Cowell, R. Li-In-On, B. Vincent, F.A. Waite, J. Chem. Soc. Faraday Trans. 74, 337 (1978)

    Article  Google Scholar 

  21. B. Vincent, P.F. Luckham, F.A. Waite, J. Colloid Interface Sci. 73, 508 (1980)

    Article  Google Scholar 

  22. B. Vincent, J. Edwards, S. Emmett, A. Jones, Colloids Surf. 17, 261 (1986)

    Article  Google Scholar 

  23. B. Vincent, Colloids Surf. 24, 269 (1987)

    Article  Google Scholar 

  24. B. Vincent, J. Edwards, S. Emmett, R. Croot, Colloids Surf. 31, 267 (1988)

    Article  Google Scholar 

  25. S. Hachisu, A. Kose, Y. Kobayashi, J. Colloid Interface Sci. 55, 499 (1976)

    Article  Google Scholar 

  26. A. Kose, S. Hachisu, J. Colloid Interface Sci. 55, 487 (1976)

    Article  Google Scholar 

  27. P.R. Sperry, H.B. Hopfenberg, N.L. Thomas, J. Colloid Interface Sci. 82, 62 (1981)

    Article  Google Scholar 

  28. P.R. Sperry, J. Colloid Interface Sci. 87, 375 (1982)

    Article  Google Scholar 

  29. P.R. Sperry, J. Colloid Interface Sci. 99, 97 (1984)

    Article  Google Scholar 

  30. A.P. Gast, C.K. Hall, W.B. Russel, J. Colloid Interface Sci. 96, 251 (1983)

    Article  Google Scholar 

  31. J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976)

    Article  ADS  Google Scholar 

  32. A.P. Gast, W.B. Russel, C.K. Hall, J. Colloid Interface Sci. 109, 161 (1986)

    Article  Google Scholar 

  33. H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990)

    Article  Google Scholar 

  34. H. Reiss, J. Phys. Chem. 96, 4736 (1992)

    Article  Google Scholar 

  35. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)

    Article  ADS  Google Scholar 

  36. S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)

    Article  ADS  Google Scholar 

  37. F. Leal-Calderon, J. Bibette, J. Biais. Europhys. Lett. 23, 653 (1993)

    Article  ADS  Google Scholar 

  38. H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Berlin, 2011)

    Google Scholar 

  39. Y. Mao, M.E. Cates, H.N.W. Lekkerkerker, Phys. A 222, 10 (1995)

    Article  Google Scholar 

  40. E.J. Meijer, D. Frenkel, J. Chem. Phys. 100, 6873 (1994)

    Article  ADS  Google Scholar 

  41. M. Dijkstra, J.M. Brader, R. Evans, J. Phys. Condens. Matter 11, 10079 (1999)

    Article  ADS  Google Scholar 

  42. P.G. Bolhuis, A.A. Louis, Macromolecules 35, 1860 (2002)

    Article  ADS  Google Scholar 

  43. A. Moncho-Jordá, A.A. Louis, P.G. Bolhuis, R. Roth, J. Phys. Condens. Matter 15, S3429 (2003)

    Article  ADS  Google Scholar 

  44. D. Kleshchanok, R. Tuinier, P.R. Lang, J. Phys Condens. Matt. 20, 073101 (2008)

    Google Scholar 

  45. J.D. van der Waals, Doctoral thesis. A.W. Sijthoff, Leiden, 1873

    Google Scholar 

  46. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000)

    MATH  Google Scholar 

  47. A. Malijevský, J. Kolafa. Introduction to the Thermodynamics of Hard Spheres and Related Systems, in: ‘Theory and Simulation of Hard-Sphere Fluids and Related Systems’, Lecture Notes in Physics, vol 753 (Springer, Berlin, 2008)

    Google Scholar 

  48. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  49. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986)

    MATH  Google Scholar 

  50. A. Fortini, M. Dijkstra, R. Tuinier, J. Phys. Condens. Matt. 17, 7783–7803 (2005)

    Google Scholar 

  51. W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968)

    Article  ADS  Google Scholar 

  52. J.E. Lennard-Jones, A.F. Devonshire, Proc. Roy. Soc. 163A, 53 (1937)

    Article  ADS  Google Scholar 

  53. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)

    Article  ADS  Google Scholar 

  54. C.G. de Kruif, P.W. Rouw, J.W. Jansen, A. Vrij, J. de Phys. 46, C3–295 (1985)

    Google Scholar 

  55. P.N. Pusey, W. Van Megen, Nature 320, 340 (1986)

    Article  ADS  Google Scholar 

  56. J. Levelt Sengers, How Fluids Unmix (Edita KNAW, Amsterdam, 2002)

    Google Scholar 

  57. Y. Tang, B.C.-Y. Lu, J. Chem. Phys. 99, 9828 (1993)

    Article  ADS  Google Scholar 

  58. Y. Tang, J. Chem. Phys. 118, 4140 (2003)

    Article  ADS  Google Scholar 

  59. Y. Tang, Y.-Z. Lin, Y.-G. Li, J. Chem. Phys. 122, 184505 (2005)

    Article  ADS  Google Scholar 

  60. R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 2045 (2006)

    Article  Google Scholar 

  61. K.P. Shukla, J. Chem. Phys. 112, 10358 (2000)

    Article  ADS  Google Scholar 

  62. M. Dijkstra, Phys. Rev. E 66, 021402 (2002)

    Article  ADS  Google Scholar 

  63. J.M. Brader, R. Evans, M. Schmidt, Mol. Phys. 101, 3349 (2003)

    Article  ADS  Google Scholar 

  64. M. Fuchs, K.S. Schweizer, J. Phys. Condens. Matter 14, R239 (2002)

    Article  ADS  Google Scholar 

  65. P.G. Bolhuis, A.A. Louis, J.P. Hansen, Phys. Rev. Lett. 89, 128302 (2002)

    Article  ADS  Google Scholar 

  66. G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1–47 (2008)

    Article  Google Scholar 

  67. R. Tuinier, M.S Feenstra. Langmuir (2014). doi:10.1021/la5023856

    Google Scholar 

  68. G.J. Fleer, R. Tuinier, Phys. A 379, 52 (2007)

    Article  Google Scholar 

  69. D.G.A.L. Aarts, R. Tuinier, H.N.W. Lekkerkerker, J. Phys. Condens. Matter 14, 7551 (2002)

    Article  ADS  Google Scholar 

  70. B. Widom, J. Chem. Phys. 39, 2808 (1963)

    Article  ADS  Google Scholar 

  71. H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 31, 369 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  72. E.J. Meijer, Computer Simulation of Molecular Solids and Colloidal Dispersions, PhD thesis. Utrecht University, Utrecht, 1993

    Google Scholar 

  73. M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041409 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This text is highly inspired by several parts of the book I wrote with Henk Lekkerkerker and I thank him for the wonderful collaborations. I also acknowledge Agienus Vrij, Alvaro Gonzalez Garcia and Maartje S. Feenstra for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco Tuinier .

Editor information

Editors and Affiliations

Appendix

Appendix

As was the original objective of SPT [71], the pressure \(\varPi^{0}\) of the hard sphere system can be obtained from the reversible work of inserting an identical sphere \((q = 1)\)

$$\frac{W}{{k_{B} T}} = - \ln [1 - \eta ] + \frac{6\eta }{1 - \eta } + \frac{{9\eta^{2} }}{{2(1 - \eta )^{2} }} + \frac{{4\pi R^{3} \varPi^{0} }}{{3k_{B} T}},$$
(3.88)

to obtain the chemical potential of the hard spheres

$$\mu_{c}^{0} = {\text{const}} + k_{B} T\ln \frac{{N_{c} }}{V} + W.$$
(3.89)

Applying the Gibbs-Duhem relation

$$\frac{{\partial \varPi^{0} }}{{\partial n_{c} }} = n_{c} \frac{{\partial \mu_{c}^{0} }}{{\partial n_{c} }}$$

one obtains

$$\frac{{\varPi^{0} v_{c} }}{{k_{B} T}} = \frac{{\eta + \eta^{2} + \eta^{3} }}{{(1 - \eta )^{3} }},$$
(3.90)

the SPT expression for the pressure of a hard sphere fluid [71], which preceded the slightly more accurate Carnahan-Starling equation Eq. (3.30), which contains an additional \(\eta^{4}\)-term.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tuinier, R. (2016). Introduction to Depletion Interaction and Colloidal Phase Behaviour. In: Lang, P., Liu, Y. (eds) Soft Matter at Aqueous Interfaces. Lecture Notes in Physics, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-24502-7_3

Download citation

Publish with us

Policies and ethics