Colloidal Hydrodynamics and Interfacial Effects

Part of the Lecture Notes in Physics book series (LNP, volume 917)


Interfaces and boundaries play an important role in numerous soft matter and biological systems. Apart from direct interactions, the boundaries interact with suspended microparticles by altering the solvent flow field in their vicinity. Hydrodynamic interactions with walls and liquid interfaces may lead to a significant change in the particle dynamics in (partially) confined geometry. In these lecture notes we review the basic concepts related to colloidal hydrodynamics and discuss in more detail the effects of geometric confinement and the hydrodynamic boundary conditions which an interface imposes on a suspension of microparticles. We start with considering the general characteristic features of low-Reynolds-number flows, which are an inherent part of any colloidal system, and discuss the appropriate boundary conditions for various types of interfaces. We then proceed to develop a proper theoretical description of the friction-dominated, inertia-free dynamics of colloidal particles. To this end, we introduce the concept of hydrodynamic mobility, and analyse the solutions of the Stokes equations for a single spherical particle in the bulk and in the presence of a planar solid-fluid, and fluid-fluid interfaces. Both forced and phoretic motions are considered, with a particular emphasis on the principles of electrophoresis and the associated fluid flows. Moreover, we discuss the hydrodynamic interactions of self-propelling microswimmers, and the peculiar motion of bacteria attracted to slip and no-slip walls.


Microswimmers Phoretic Motion Doublet Source Rotlet Hydrodynamic Drag Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



These notes include and complement material which was presented in August 2014 at the SOMATAI summer school in Berlin, and in March 2014 at the SOMATAI workshop in Jülich. It is our pleasure to thank the organizers of these events, and here in particular Peter Lang (ICS-3, FZ Jülich), for having invited us to present a lecture on the colloidal hydrodynamics of microparticles and associated interfacial effects. We thank Maria Ekiel-Jeżewska (Polish Academy of Sciences, Warsaw) for having provided us with the streamlines figures of a point force near a planar interface, and Jonas Riest and Rafael Roa (ICS-3, FZ Jülich) and Roland Winkler (IAS-2, FZ Jülich) for helpful discussions. Moreover, we are grateful to Ulrike Nägele (FZ Jülich, ICS-3) for her help with travel and accommodation.


  1. 1.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids. Elsevier, Amsterdam (1996)Google Scholar
  2. 2.
    P. Szymczak, M. Cieplak, J. Phys. Condens. Matter. 23, 033102 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    R.G. Larson, J.J. Magda, Macromolecules 22, 3004 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    H. Tanaka, J. Phys.: Condens. Matter 13, 4637 (2001)ADSGoogle Scholar
  5. 5.
    P. Wojtaszczyk, J.B. Avalos, Phys. Rev. Lett. 80, 754 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    C. Korn, U.S. Schwarz, Phys. Rev. Lett. 97, 138103 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    O.B. Usta, J.E. Butler, A.J.C. Ladd, Phys. Fluids 18, 031703 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    E. Guazzelli, J.F. Morris, A Physical Introduction to Suspension Dynamics (Cambridge University Press, Cambridge, 2012)zbMATHGoogle Scholar
  9. 9.
    G. Nägele, Colloidal Hydrodynamics, in Physics of Complex Colloids, ed. by C. Bechinger, F. Sciortino, P. Ziherl. Proceedings of the International School of Physics “Enrico Fermi”, vol. 184 (IOS Press, Amsterdam; SIF, Bologna, 2012), p. 451Google Scholar
  10. 10.
    G. Nägele, Dynamics of charged-particles dispersions, in Proceedings of the 5th Warsaw School of Statistical Physics (Warsaw University Press, 2014), p. 83Google Scholar
  11. 11.
    E.J. Hinch, Hydrodynamics at low Reynolds numbers: A brief and elementary introduction, in Disorder and Mixing, vol. 2, ed. by E. Guyon, J.-P. Nadal, Y. Pomeau (Springer, Dordrecht, 1988), pp. 43–55Google Scholar
  12. 12.
    P.N. Pusey, Colloidal suspensions, in Liquids, Freezing and Glass Transition, ed. by J.P. Hansen, D. Levesque, J. Zinn-Justin (Elsevier, Amsterdam, 1991), p. 763Google Scholar
  13. 13.
    R.B. Jones, P.N. Pusey, Annu. Rev. Phys. Chem. 42, 137 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, 1991)Google Scholar
  15. 15.
    J. Happel, H. Brenner, Low Reynolds Numbers Hydrodynamics (Kluwer, Dordrecht, 1991)zbMATHGoogle Scholar
  16. 16.
    Z. Zapryanov, S. Tabakova, Dynamics of Bubbles, Drops and Rigid Particles, Fluid Mechanics and Its Applications (Springer, Dordrecht, 2011)zbMATHGoogle Scholar
  17. 17.
    G.K. Batchelor, An Introduction to Fluid Dynamics. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2000)Google Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics (Pergamon Press, London, 1987)Google Scholar
  19. 19.
    E. Guyon, J.P. Hulin, L. Petit, Physical Hydrodynamics (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  20. 20.
    G.I. Taylor, Low Reynolds Number Flows. National Committe For Fluid Mechanics Films (1996),
  21. 21.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge Monographs on Mechanics (Cambridge University Press, Cambridge, 1989)CrossRefGoogle Scholar
  22. 22.
    E. Lauga, M.P. Brenner, H.A. Stone, The no-slip boundary condition, in Springer Handbook of Experimental Fluid Mechanics, ed. by C. Tropea, A. Yarin, J.F. Foss (Springer, Berlin, 2007Google Scholar
  23. 23.
    L.G. Leal, Laminar Flow and Convective Transport Processes (Butterworth-Heinemann, Boston, 1992Google Scholar
  24. 24.
    N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak, F. Feuillebois, J. Fluid Mech. 513, 247 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    R. Tuinier, T. Taniguchi, J. Phys.: Condens. Matter 17, L9 (2005)ADSGoogle Scholar
  26. 26.
    D. Lopez, E. Lauga, Phys. Fluids 26, 071902 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    K.H. Lan, N. Ostrowsky, D. Sornette, Phys. Rev. Lett. 57, 17 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    B. Cichocki, M.L. Ekiel-Jezewska, E. Wajnryb, J. Chem. Phys. 136, 071102 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    I.M. Jánosi, T. Tél, D.E. Wolf, J.A.C. Gallas, Phys. Rev. E 56, 2858 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    M.L. Ekiel-Jeżewska, E. Wajnryb, Phys. Rev. E 83, 067301 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    D.L. Ermak, J.A. McCammon, J. Chem. Phys. 69, 1352 (1978)ADSCrossRefGoogle Scholar
  33. 33.
    G. Nägele, Brownian Dynamics simulations, in Computational Condensed Matter Physics, vol. 32 (Forschungszentrum Jülich Publishing, 37th IFF Spring School edition, 2006)Google Scholar
  34. 34.
    A.T. Chwang, T. Wu, J. Fluid Mech. 67, 787 (1975)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992)zbMATHCrossRefGoogle Scholar
  36. 36.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998Google Scholar
  37. 37.
    B. Cichocki, B.U. Felderhof, K. Hinsen, J. Chem. Phys. 100, 3780 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    M.L. Ekiel-Jeżewska, E. Wajnryb, Precise multipole method for calculating hydrodynamic interactions between spherical particles in the stokes flow, in Theoretical Methods for Micro Scale Viscous Flows, ed. by F. Feuillebois, A. Sellier (2009), pp. 127–172Google Scholar
  39. 39.
    M. Lisicki, arXiv:1312.6231 [physics.flu-dyn] (2013)Google Scholar
  40. 40.
    L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Luo, C. Pozrikidis, J. Eng. Math. 62, 1 (2007)CrossRefGoogle Scholar
  43. 43.
    G.K. Batchelor, J. Fluid Mech. 44, 419 (1970)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M.M. Tirado, C.L. Martinez, J.G. de la Torre, J. Chem. Phys. 81, 2047 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    R.G. Cox, J. Fluid Mech. 44, 791 (1970)ADSCrossRefGoogle Scholar
  46. 46.
    J.B. Keller, S.I. Rubinow, J. Fluid Mech. 75, 705 (1976)ADSCrossRefGoogle Scholar
  47. 47.
    G.G. Stokes, Trans. Camb. Philos. Soc. 9, 8 (1851)ADSGoogle Scholar
  48. 48.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (Wiley, New York, 2006Google Scholar
  50. 50.
    H.J. Keh, J.L. Anderson, J. Fluid Mech. 153, 417 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    H.A. Stone, A.D. Samuel, Phys. Rev. Lett. 77, 4102 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    C. Contreras-Aburto, G. Nägele, J. Chem. Phys. 139, 134110 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    F. Weinert, D. Braun, Phys. Rev. Lett. 101, 168301 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    J. Rotne, S. Prager, J. Chem. Phys. 50, 4831 (1969)ADSCrossRefGoogle Scholar
  57. 57.
    H. Yamakawa, J. Chem. Phys. 53, 436 (1970)ADSCrossRefGoogle Scholar
  58. 58.
    E. Wajnryb, K.A. Mizerski, P.J. Zuk, P. Szymczak, J. Fluid Mech. 731, R3 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    R. Courant, D. Hilbert, Methods of Mathematical Physics II (Interscience, New York, 1962)zbMATHGoogle Scholar
  60. 60.
    F.M. Weinert, D. Braun, Phys. Rev. Lett. 101, 168301 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    P.J. Zuk, E. Wajnryb, K.A. Mizerski, P. Szymczak, J. Fluid Mech. 741, R5 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    B. Carrasco, J. Garcia de la Torre, Biophys. J. 76, 3044 (1999)CrossRefGoogle Scholar
  63. 63.
    B. Cichocki, R.B. Jones, R. Kutteh, E. Wajnryb, J. Chem. Phys. 112, 2548 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    S. Bhattacharya, J. Blawzdziewicz, E. Wajnryb, Physica A 356, 294 (2005)Google Scholar
  65. 65.
    M. Kedzierski, E. Wajnryb, J. Chem. Phys. 133, 154105 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    D.J. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 1990)zbMATHGoogle Scholar
  67. 67.
    D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984)ADSCrossRefGoogle Scholar
  68. 68.
    R. Tadmor, J. Phys.: Condens. Matter 13, L195 (2001)ADSGoogle Scholar
  69. 69.
    M.L. Ekiel-Jeżewska, R. Boniecki, Stokes Flow generated by a point force in various geometries II. Velocity field, Technical report, IFTR. Polish Acad. Sci. (2010)Google Scholar
  70. 70.
    B. Cichocki, M.L. Ekiel-Jeżewska, G. Nägele, E. Wajnryb, J. Chem. Phys. 121, 2305 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    J. Blake, Proc. Camb. Philos. Soc. 70, 303 (1971)ADSCrossRefGoogle Scholar
  72. 72.
    K. Aderogba, J.R. Blake, Bull. Aust. Math. Soc. 18, 345 (1978)CrossRefGoogle Scholar
  73. 73.
    J. Blake, A. Chwang, J. Eng. Math. 8, 23 (1974)CrossRefGoogle Scholar
  74. 74.
    E. Lauga, T.M. Squires, Phys. Fluids 17, 103102 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    M. Lisicki, B. Cichocki, S.A. Rogers, J.K.G. Dhont, P.R. Lang, Soft Matter 10, 4312 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    B. Cichocki, R.B. Jones, Phys. A 258, 273 (1998)CrossRefGoogle Scholar
  77. 77.
    H.A. Lorentz, Abhandlung über Theoretische Physik (B. G. Teubner, Leipzig, 1907)Google Scholar
  78. 78.
    H. Faxén, Ark. Mat. Astron. Fys. 17, 1 (1923)Google Scholar
  79. 79.
    H. Brenner, Chem. Eng. Sci. 16, 242 (1961)CrossRefGoogle Scholar
  80. 80.
    A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22, 637 (1967)CrossRefGoogle Scholar
  81. 81.
    A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22, 653 (1967)CrossRefGoogle Scholar
  82. 82.
    W. Dean, M. O’Neill, Mathematika 10, 13 (1963)MathSciNetCrossRefGoogle Scholar
  83. 83.
    W. Dean, M. O’Neill, Mathematika 11, 67 (1964)MathSciNetCrossRefGoogle Scholar
  84. 84.
    R.B. Jones, J. Chem. Phys. 123, 164705 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    B. Lin, J. Yu, S. Rice, Phys. Rev. E 62, 3909 (2000)ADSCrossRefGoogle Scholar
  86. 86.
    R. Sadr, C. Hohenegger, H. Li, P.J. Mucha, M. Yoda, J. Fluid Mech. 577, 443 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    P. Huang, K. Breuer, Phys. Rev. E 76, 046307 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    L. Lobry, N. Ostrowsky, Phys. Rev. B 53, 12050 (1996)ADSCrossRefGoogle Scholar
  89. 89.
    K. Ishii, T. Iwai, H. Xia, Opt. Express 18, 7390 (2010)ADSCrossRefGoogle Scholar
  90. 90.
    M.A. Plum, W. Steffen, G. Fytas, W. Knoll, B. Menges, Opt. Express 17, 10364 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    M.A. Plum, J. Rička, H.-J. Butt, W. Steffen, New J. Phys. 12, 103022 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    P. Holmqvist, J.K.G. Dhont, P.R. Lang, Phys. Rev. E 74, 021402 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    P. Holmqvist, J.K.G. Dhont, P.R. Lang, J. Chem. Phys. 126, 044707 (2007)ADSCrossRefGoogle Scholar
  94. 94.
    M. Hosoda, K. Sakai, K. Takagi, Phys. Rev. E 58, 6275 (1998)ADSCrossRefGoogle Scholar
  95. 95.
    M. Lisicki, B. Cichocki, J.K.G. Dhont, P.R. Lang, J. Chem. Phys. 136, 204704 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    S.A. Rogers, M. Lisicki, B. Cichocki, J.K.G. Dhont, P.R. Lang, Phys. Rev. Lett. 109, 098305 (2012)ADSCrossRefGoogle Scholar
  97. 97.
    B.J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Dover Books on Physics Series (Dover Publications, Mineola, 2000Google Scholar
  98. 98.
    R. Sigel, Curr. Opin. Colloid Interface Sci. 14, 426 (2009)CrossRefGoogle Scholar
  99. 99.
    G. Nägele, Phys. Rep. 272, 215 (1996)ADSCrossRefGoogle Scholar
  100. 100.
    B. Cichocki, M.L. Ekiel-Jeżewska, E. Wajnryb, J. Chem. Phys. 140, 164902 (2014)ADSCrossRefGoogle Scholar
  101. 101.
    W.B. Russel, E.J. Hinch, L.G. Leal, G. Tieffenbruck, J. Fluid Mech. 83, 273 (1977)ADSCrossRefGoogle Scholar
  102. 102.
    S.-M. Yang, L.G. Leal, J. Fluid Mech. 136, 393 (1983)ADSCrossRefGoogle Scholar
  103. 103.
    E.P. Ascoli, D.S. Dandy, L.G. Leal, J. Fluid Mech. 213, 287 (1990)ADSCrossRefGoogle Scholar
  104. 104.
    I. Cantat, C. Misbah, Phys. Rev. Lett. 83, 880 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    U.S. Agarwal, A. Dutta, R.A. Mashelkar, Chem. Eng. Sci. 49, 1693 (1994)CrossRefGoogle Scholar
  106. 106.
    C. Berdan, L.G. Leal, J. Colloid Interface Sci. 87, 62 (1982)CrossRefGoogle Scholar
  107. 107.
    R. Trouilloud, T. Yu, A. Hosoi, E. Lauga, Phys. Rev. Lett. 101, 048102 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)Google Scholar
  110. 110.
    J. Lighthill, Mathematical Biofluiddynamics (SIAM, Philadelphia, 1975)zbMATHCrossRefGoogle Scholar
  111. 111.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  112. 112.
    J.W. Swan, J.F. Brady, R.S. Moore, Phys. Fluids 23, 071901 (2011)ADSCrossRefGoogle Scholar
  113. 113.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)ADSCrossRefGoogle Scholar
  114. 114.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)ADSCrossRefGoogle Scholar
  115. 115.
    R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 038101 (2011)Google Scholar
  116. 116.
    P.P. Lele, J.W. Swan, J.F. Brady, N.J. Wagner, E.M. Furst, Soft Matter 7, 6844 (2011)ADSCrossRefGoogle Scholar
  117. 117.
    T. Squires, M. Brenner, Phys. Rev. Lett. 85, 4976 (2000)ADSCrossRefGoogle Scholar
  118. 118.
    T.M. Squires, J. Fluid Mech. 443, 403 (2001)ADSCrossRefGoogle Scholar
  119. 119.
    R. Di Leonardo, F. Ianni, G. Ruocco, Langmuir 25, 4247 (2009)CrossRefGoogle Scholar
  120. 120.
    J. Morthomas, A. Würger, Phys. Rev. E 81, 051405 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsInstitute of Theoretical Physics, University of WarsawWarsawPoland
  2. 2.Institute for Complex Systems ICS-3Forschungszentrum Jülich, and Institut für Theoretische Physik, Heinrich-Heine-Universität DüsseldorfJülichGermany

Personalised recommendations