Skip to main content

Intelligent Process Control Using Control Charts—I: Control Charts for Variables

  • Chapter
  • First Online:
  • 2230 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 97))

Abstract

Shewhart’s control charts are used when you have enough and exact observed data. In case of incomplete and vague data, they can be still used by the help of the fuzzy set theory. In this chapter, we develop the fuzzy control charts for variables, which are namely \( \overline{X} \) and R and \( \overline{X} \) and S charts. Triangular fuzzy numbers have been used in the development of these charts. Unnatural patterns have been examined under fuzziness. Besides, fuzzy EWMA charts have been also developed in this chapter. For each fuzzy case, we present a numerical example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chen, G., Cheng, S.W.: Max-chart: combining X-bar and s-chart. Statistica Sinica 8, 263–271 (1998)

    MATH  Google Scholar 

  • Eyvazian, M., Naini, S.G.J., Vaghefi, A.: Monitoring process variability using exponentially weighted moving sample variance control charts. Int. J. Adv. Manuf. 39, 261–270 (2008)

    Article  Google Scholar 

  • Han, D., Tsung, F.: A generalized EWMA control chart and its comparison with the optimal EWMA, CUSUM and GRL schemes. Ann Stat. 32(1), 316–339 (2004)

    MATH  Google Scholar 

  • Li, Z., Wang, Z.: An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles. Comput. Ind. Eng. 59, 630–637 (2010)

    Article  Google Scholar 

  • Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley, New York (2001)

    Google Scholar 

  • Nelson, L.S.: The Shewhart control chart–tests for special causes. J. Qual. Technol. 16(4), 238 (1984)

    Google Scholar 

  • Sheu, S.H., Lin, T.C.: The generally weighted moving average control chart for detecting small shifts in the process mean. Qual. Eng. 16, 209–231 (2003)

    Article  Google Scholar 

  • Sheu, S.H., Huang, C.J., Hsu, T.S.: Extended maximum generally weighted moving average control chart for monitoring process mean and variability. Comput. Ind. Eng. 62, 216–225 (2012)

    Article  Google Scholar 

  • Shu, M.-H., Nguyen, T.-L., Hsu, B.-M.: Fuzzy MaxGWMA chart for identifying abnormal variations of on-line manufacturing processes with imprecise information. Expert Syst. Appl. 41, 1342–1356 (2014)

    Article  Google Scholar 

  • Western Electric Company: Statistical Quality Control Handbook, Indianapolis, Indiana (1956)

    Google Scholar 

  • Xie, H.: Contributions to qualimetry. Ph.D. thesis, Winnipeg, Canada: University of Manitoba (1999)

    Google Scholar 

  • Zhang, J., Li, Z., Wang, Z.: A multivariate control chart for simultaneously monitoring process mean and variability. Comput. Stat. Data Anal. 54, 2244–2252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Juran’s Quality Handbook: McGraw-Hill Professional; 6 edn. (2010). ISBN-10: 0071629734

    Google Scholar 

  • Asady, B.: The revised method of ranking LR fuzzy numbers based on deviation degree. Expert Syst. Appl. 37, 5056–5060 (2010)

    Article  Google Scholar 

  • Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy numbers. Fuzzy Sets Syst. 15, 1–19 (1985)

    Article  MATH  Google Scholar 

  • Brunelli, M., Mezeib, J.: How different are ranking methods for fuzzy numbers? A numerical study. Int. J. Approximate Reasoning 54, 627–639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S.-M., Chen, J.H.: Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst. Appl. 36(3), 6833–6842 (2009)

    Article  Google Scholar 

  • Chen, S.-J., Hwang, C.-L.: Fuzzy Multiple Attribute Decision Making. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Chen, S.-M., Sanguansat, K.: Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers. Expert Syst. Appl. 38(3), 2163–2171 (2011)

    Article  Google Scholar 

  • Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95, 307–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets Syst. 54, 287–294 (1993)

    Article  MathSciNet  Google Scholar 

  • Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and the original point. Comput. Math Appl. 43, 111–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, H.: A discriminative analysis of approaches to ranking fuzzy numbers in fuzzy decision making. In: Proceedings of the 4th IEEE International Conference on Fuzzy Systems and Knowledge Discovery, 26–29 Aug, Haikou, China (2007)

    Google Scholar 

  • Deng, Y., Zhu, Z.F., Liu, Q.: Ranking fuzzy numbers with an area method using radius of gyration. Comput. Math Appl. 51, 1127–1136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chrysler, Ford, GM: Measurement Systems Analysis Reference Manual. AIAG, Detroit, MI (1995)

    Google Scholar 

  • Detyniecki, M., Yager, R.R.: Ranking fuzzy numbers using α-weighted valuations. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 8(5), 573–592 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Dias, G.: Ranking alternatives using fuzzy numbers: a computational approach. Fuzzy Sets Syst. 56, 247–252 (1993)

    Article  MathSciNet  Google Scholar 

  • Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  • Dubois, D., Prade, H.: Fuzzy sets—a convenient function for modeling vagueness and possibility. IEEE Trans. Fuzzy Syst. 2, 16–21 (1994)

    Article  Google Scholar 

  • Duncan, A.J.: Quality Control and Industrial Statistics, 5th edn. Irwin, Homewood (1986)

    MATH  Google Scholar 

  • Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy Sets Syst. 82(3), 19–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Gitlow, H.S.: Tools and Methods for the Improvement of Quality (1989). ISBN-10: 0256056803

    Google Scholar 

  • Gülbay, M., Kahraman, C.: Development of fuzzy process control charts and fuzzy unnatural pattern analyses. Comput. Stat. Data Anal. 51, 434–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gülbay, M., Kahraman, C.: An alternative approach to fuzzy control charts: direct fuzzy approach. Inf. Sci. 177(6), 1463–1480 (2007)

    Article  MATH  Google Scholar 

  • Gülbay, M., Kahraman, C., Ruan, D.: α-cut fuzzy control charts for linguistic data. Int. J. Intell. Syst. 19, 1173–1196 (2004)

    Article  MATH  Google Scholar 

  • Jain, R.: Decision-making in the presence of fuzzy variables. IEEE Trans. Syst. Man Cybern. 6, 698–703 (1976)

    MATH  Google Scholar 

  • Jain, R.: A procedure for multi-aspect decision making using fuzzy sets. Int. J. Syst. Sci. 8, 1–7 (1978)

    Article  MATH  Google Scholar 

  • Kim, K., Park, K.S.: Ranking fuzzy numbers with index of optimism. Fuzzy Sets Syst. 35, 143–150 (1990)

    Article  MathSciNet  Google Scholar 

  • Kim, C.B., Seong, K.A., Lee-Kwang, H.: Design and implementation of fuzzy elevator group control system. IEEE Trans. Syst. Man Cybern. 28, 277–287 (1998)

    Article  Google Scholar 

  • Lee, J.H., Lee-Kwang, H.: Distributed and cooperative fuzzy controller for traffic intersection group. IEEE Trans. Syst. Man Cybern. 29, 263–271 (1999)

    Article  Google Scholar 

  • Lee, E.S., Li, R.J.: Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput. Math Appl. 15, 887–896 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, K.M., Cho, C.H., Lee-Kwang, H.: Ranking fuzzy values with satisfaction function. Fuzzy Sets Syst. 64, 295–311 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X.-W., Han, S.-L.: Ranking fuzzy numbers with preference weighting function expectations. Comput. Math Appl. 49, 1731–1753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Murakami, S., Maeda, S., Imamura, S.: Fuzzy decision analysis on the development of centralized regional energy control system. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 363–368 (1983)

    Google Scholar 

  • Raj, A., Kumar, D.N.: Ranking alternatives with fuzzy weights using maximizing set and minimizing set. Fuzzy Sets Syst. 105, 365–375 (1999)

    Article  MATH  Google Scholar 

  • Rao, P.P.B., Shankar, N.R.: Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality. Adv. Fuzzy Syst. 2011, Article ID 178308 (2011). doi:10.1155/2011/178308

    Google Scholar 

  • Requena, I., Delgado, M., Verdagay, J.I.: Automatic ranking of fuzzy numbers with the criterion of decision-maker learnt by an artificial neural network. Fuzzy Sets Syst. 64, 1–19 (1994)

    Article  Google Scholar 

  • Senturk, S., Erginel, N.: Development of fuzzy and control charts using α-cuts. Inf. Sci. 179(10), 1542–1551 (2009)

    Article  Google Scholar 

  • Şentürk, S., Erginel, N., Kaya, İ., Kahraman, C.: Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Appl. Soft Comput. 22, 1–10 (2014)

    Article  Google Scholar 

  • Shureshjani, R.A., Darehmiraki, M.: A new parametric method for ranking fuzzy numbers. Indagationes Mathematicae 24, 518–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, H., Wu, J.: A new approach for ranking fuzzy numbers based on fuzzy simulation analysis method. Appl. Math. Comput. 174, 755–767 (2006)

    MathSciNet  MATH  Google Scholar 

  • Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst. 130, 331–341 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y.J., Lee, H.S.: The revised method of ranking fuzzy numbers with an area between the centroid and original points. Comput. Math Appl. 55, 2033–2042 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.-X., Liu, Y.-J., Fan, Z.-P., Feng, B.: Ranking L-R fuzzy number based on deviation degree. Inf. Sci. 179, 2070–2077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Westgard, J.O., Westgard S.: Basic Quality Management Systems (2014). ISBN: 1-886958-28-9

    Google Scholar 

  • Yager, R.R.: Ranking fuzzy subsets over the unit interval. In: Proceeding of the 17th IEEE International Conference on Decision and Control, San Diego, CA, pp. 1435–1437 (1978)

    Google Scholar 

  • Yeh, C.H., Deng, H.: A practical approach to fuzzy utilities comparison in fuzzy multicriteria analysis. Int. J. Approximate Reasoning 35(2), 179–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  • Zimmermann, H.-J.: Fuzzy Set Theory and its Applications, 3rd edn. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

  • Zimmermann, H.-J.: An application-oriented view of modeling uncertainty. Eur. J. Oper. Res. 122, 190–198 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Gülbay .

Editor information

Editors and Affiliations

Appendices

Appendix A

Table of coefficients for control charts for variables.

Observations in subgroup, n

A 2

A 3

c4

B 3

B 4

B 5

B 6

d 2

d 3

D 1

D 2

D 3

D 4

E 2

2

1.880

2.659

0.798

0.000

3.267

0.000

2.606

1.128

0.853

0.000

3.686

0.000

3.267

2.660

3

1.023

1.954

0.886

0.000

2.568

0.000

2.276

1.693

0.888

0.000

4.358

0.000

2.574

1.772

4

0.729

1.628

0.921

0.000

2.266

0.000

2.088

2.059

0.880

0.000

4.698

0.000

2.282

1.457

5

0.577

1.427

0.940

0.000

2.089

0.000

1.964

2.326

0.864

0.000

4.918

0.000

2.114

1.290

6

0.483

1.287

0.952

0.030

1.970

0.029

1.874

2.534

0.848

0.000

5.078

0.000

2.004

1.184

7

0.419

1.182

0.959

0.118

1.882

0.113

1.806

2.704

0.833

0.204

5.204

0.076

1.924

1.109

8

0.373

1.099

0.965

0.185

1.815

0.179

1.751

2.847

0.820

0.388

5.306

0.136

1.864

1.054

9

0.337

1.032

0.969

0.239

1.761

0.232

1.707

2.970

0.808

0.547

5.393

0.184

1.816

1.010

10

0.308

0.975

0.973

0.284

1.716

0.276

1.669

3.078

0.797

0.687

5.469

0.223

1.777

0.975

11

0.285

0.927

0.975

0.321

1.679

0.313

1.637

3.173

0.787

0.811

5.535

0.256

1.744

0.945

12

0.266

0.886

0.978

0.354

1.646

0.346

1.610

3.258

0.778

0.922

5.594

0.283

1.717

0.921

13

0.249

0.850

0.979

0.382

1.618

0.374

1.585

3.336

0.770

1.025

5.647

0.307

1.693

0.899

14

0.235

0.817

0.981

0.406

1.594

0.399

1.563

3.407

0.763

1.118

5.696

0.328

1.672

0.881

15

0.223

0.789

0.982

0.428

1.572

0.421

1.544

3.472

0.756

1.203

5.741

0.347

1.653

0.864

16

0.212

0.763

0.984

0.448

1.552

0.440

1.526

3.532

0.750

1.282

5.782

0.363

1.637

0.849

17

0.203

0.739

0.985

0.466

1.534

0.458

1.511

3.588

0.744

1.356

5.820

0.378

1.622

0.836

18

0.194

0.718

0.985

0.482

1.518

0.475

1.496

3.640

0.739

1.424

5.856

0.391

1.608

0.824

19

0.187

0.698

0.986

0.497

1.503

0.490

1.483

3.689

0.734

1.487

5.891

0.403

1.597

0.813

20

0.180

0.680

0.987

0.510

1.490

0.504

1.470

3.735

0.729

1.549

5.921

0.415

1.585

0.803

21

0.173

0.663

0.988

0.523

1.477

0.516

1.459

3.778

0.724

1.605

5.951

0.425

1.575

0.794

22

0.167

0.647

0.988

0.534

1.466

0.528

1.448

3.819

0.720

1.659

5.979

0.434

1.566

0.786

23

0.162

0.633

0.989

0.545

1.455

0.539

1.438

3.858

0.716

1.710

6.006

0.443

1.557

0.778

24

0.157

0.619

0.989

0.555

1.445

0.549

1.429

3.895

0.712

1.759

6.031

0.451

1.548

0.770

25

0.153

0.606

0.990

0.565

1.435

0.559

1.420

3.931

0.708

1.806

6.056

0.459

1.541

0.763

Appendix B

The equations to compute sample area outside the control the limits.

$$ \begin{aligned} A_{out}^{U} = & \, \frac{1}{2}\left[ {\left( {d^{\alpha } - {UCL}_{4}^{\alpha } } \right) + \left( {d^{t} - {UCL}_{4}^{t} } \right)} \right]\left( {\hbox{max} \left( {t - \alpha ,0} \right)} \right) \\ & +\, \frac{1}{2}\left[ {\left( {d^{z} - a^{z} } \right) + \left( {c - b} \right)} \right]\left( {\hbox{min} \left( {1 - t,1 - \alpha } \right)} \right) \\ \end{aligned} $$
(2.104)

where,

$$ t = \frac{{{UCL}_{4} - a}}{{\left( {b - a} \right) + \left( {c - b} \right)}}\,{\text{and}}\,z = \hbox{max} \left( {t,\alpha } \right) $$
$$ A_{out}^{U} = \frac{1}{2}\left[ {\left( {d^{\alpha } - {UCL}_{4}^{\alpha } } \right) + \left( {c - {UCL}_{3} } \right)} \right]\left( {1 - \alpha } \right) $$
(2.105)
$$ A_{out}^{U} = \frac{1}{2}\left( {d^{\alpha } - {UCL}_{4}^{\alpha } } \right)\left( {\hbox{max} \left( {t - \alpha ,0} \right)} \right) $$
(2.106)

where

$$ t = \frac{{{UCL}_{4} - d}}{{\left( {{UCL}_{4} - {UCL}_{3} } \right) - \left( {d - c} \right)}} $$
$$ A_{out}^{U} = \frac{1}{2}\left[ {\left( {c - {UCL}_{3} } \right) + \left( {d^{z} - {UCL}_{4}^{z} } \right)} \right]\left( {\hbox{min} \left( {1 - t,1 - \alpha } \right)} \right) $$
(2.107)

where

$$ t = \frac{{{UCL}_{4} - d}}{{\left( {{UCL}_{4} - {UCL}_{3} } \right) - \left( {d - c} \right)}}\,{\text{and}}\,z = \hbox{max} \left( {t,\alpha } \right) $$
$$ \begin{aligned} A_{out}^{U} & = \frac{1}{2}\left[ {\left( {d^{{z_{2} }} - {UCL}_{4}^{{z_{2} }} } \right) + \left( {d^{{t_{1} }} - {UCL}_{4}^{{t_{1} }} } \right)} \right]\left( {\hbox{min} \left( {\hbox{max} \left( {t_{1} - \alpha ,0} \right),t_{1} - t_{2} } \right)} \right) \\ & \quad + \frac{1}{2}\left[ {\left( {d^{{z_{1} }} - a^{{z_{1} }} } \right) + \left( {c - b} \right)} \right]\left( {\hbox{min} \left( {1 - t_{1} ,1 - \alpha } \right)} \right) \\ \end{aligned} $$

where

$$ \begin{aligned} t_{1} & = \frac{{{UCL}_{4} - a}}{{\left( {b - a} \right) + \left( {{UCL}_{4} - {UCL}_{3} } \right)}}, \\ t_{2} & = \frac{{{UCL}_{4} - d}}{{\left( {{UCL}_{4} - {UCL}_{3} } \right) - \left( {d - c} \right)}}, \\ \end{aligned} $$
(2.108)
$$ z_{1} = \hbox{max} \left( {\alpha ,t_{1} } \right), \,{\text{and}}\,z_{2} = \hbox{max} \left( {\alpha ,t_{2} } \right) $$
$$ A_{out}^{U} = 0 $$
(2.109)
$$ A_{out}^{U} = \frac{1}{2}\left[ {\left( {d^{\alpha } - a^{\alpha } } \right) + \left( {c - b} \right)} \right]\left( {1 - \alpha } \right) $$
(2.110)
$$ \begin{aligned} A_{out}^{L} & = \frac{1}{2}\left[ {\left( {{LCL}_{1}^{\alpha } - a^{\alpha } } \right) + \left( {{LCL}_{1}^{t} - a^{t} } \right)} \right]\left( {\hbox{max} \left( {t - \alpha ,0} \right)} \right) \\ & \quad + \frac{1}{2}\left[ {\left( {d^{z} - a^{z} } \right) + \left( {c - b} \right)} \right]\left( {\hbox{min} \left( {1 - t,1 - \alpha } \right)} \right) \\ \end{aligned} $$
(2.111)

where

$$ t = \frac{{d - {LCL}_{1} }}{{\left( {{LCL}_{2} - {LCL}_{1} } \right) + \left( {d - c} \right)}}\,{\text{and}}\,z = \hbox{max} \left( {\alpha ,t} \right) $$
$$ A_{out}^{L} = \frac{1}{2}\left[ {\left( {d^{\alpha } - a^{\alpha } } \right) + \left( {c - b} \right)} \right]\left( {1 - \alpha } \right) $$
(2.112)
$$ A_{out}^{L} = \frac{1}{2}\left[ {\left( {{LCL}_{1}^{\alpha } - a^{\alpha } } \right) + \left( {{LCL}_{2} - b} \right)} \right]\left( {1 - \alpha } \right) $$
(2.113)
$$ \begin{aligned} A_{out}^{L} & = \frac{1}{2}\left[ {\left( {{LCL}_{1}^{{z_{2} }} - a^{{z_{2} }} } \right) + \left( {{LCL}_{1}^{{t_{1} }} - a^{{t_{1} }} } \right)} \right]\left( {\hbox{min} \left( {\hbox{max} \left( {t_{1} - \alpha ,0} \right),t_{1} - t_{2} } \right)} \right) \\ & \quad + \frac{1}{2}\left[ {\left( {d^{{z_{1} }} - a^{{z_{1} }} } \right) + \left( {c - b} \right)} \right]\left( {\hbox{min} \left( {1 - t,1 - \alpha } \right)} \right) \\ \end{aligned} $$
(2.114)

where

$$ \begin{aligned} t_{1} & = \frac{{d - {LCL}_{1} }}{{\left( {{LCL}_{2} - {LCL}_{1} } \right) + \left( {d - c} \right)}}, \\ t_{2} & = \frac{{a - {LCL}_{1} }}{{\left( {{LCL}_{2} - {LCL}_{1} } \right) - \left( {b - a} \right)}} \\ \end{aligned} $$
$$ z_{1} = \hbox{max} \left( {\alpha ,t_{1} } \right),\,{\text{and}}\,z_{2} = \hbox{max} \left( {\alpha ,t_{2} } \right) $$
$$ A_{out}^{L} = \frac{1}{2}\left[ {\left( {{LCL}_{1}^{z} - a^{z} } \right) + \left( {{LCL}_{2} - b} \right)} \right]\left( {\hbox{min} \left( {1 - t,1 - \alpha } \right)} \right) $$
(2.115)

where

$$ t = \frac{{a - {LCL}_{1} }}{{\left( {{LCL}_{2} - {LCL}_{1} } \right) - \left( {b - a} \right)}},\,{\text{and}}\,z = \hbox{max} \left( {\alpha ,t} \right) $$
$$ A_{out}^{L} = 0 $$
(2.116)
$$ A_{out}^{L} = \frac{1}{2}\left[ {\left( {d^{\alpha } - a^{\alpha } } \right) + \left( {c - b} \right)} \right]\left( {1 - \alpha } \right) $$
(2.117)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gülbay, M., Kahraman, C. (2016). Intelligent Process Control Using Control Charts—I: Control Charts for Variables. In: Kahraman, C., Yanik, S. (eds) Intelligent Decision Making in Quality Management. Intelligent Systems Reference Library, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-24499-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24499-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24497-6

  • Online ISBN: 978-3-319-24499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics