Skip to main content

Stress, Transposons, and the Brain Epigenome

  • Chapter
  • First Online:
Epigenetics and Neuroendocrinology

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1056 Accesses

Abstract

Long thought to be transcriptionally silent junk, transposable elements (TEs) are emerging as sources of functional elements in mammalian genomes due to the introduction of modern deep sequencing techniques. They have begun to attract the attention of neuroscientists due to the observation that the brain appears to be a privileged environment for transposon activity. In the brain, TEs show active transposition and frequently interact with the epigenetic machinery during development and in response to environmental inputs like stress. Barbara McClintock, the discoverer of TEs, long asserted that these elements were an important part of the genomic control apparatus, particularly in response to stress to the organism. Recent work has shown that this observation was a prescient one, as stress shows the capacity to alter the activity of these elements in the brain, in some cases with both adaptive and pathogenic consequences. TEs have been recently implicated in a number of mental disorders including Rett syndrome, posttraumatic stress disorder (PTSD), and schizophrenia. TE-derived regulatory RNA may comprise one of the largest single classes of functional elements in our genome, a discovery which will have a profound effect on how gene-environment interactions are understood within the context of the nervous system and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrusan G, Krambeck HJ (2006) The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model. J Mol Evol 63(4):484–492

    Article  CAS  PubMed  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodega B, Orlando V (2014) Repetitive elements dynamics in cell identity programming, maintenance and disease. Curr Opin Cell Biol 31:67–73

    Article  CAS  PubMed  Google Scholar 

  • Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P (1998) Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch Gen Psychiatry 55(7):626–632

    Article  CAS  PubMed  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casa V, Gabellini D (2012) A repetitive elements perspective in Polycomb epigenetics. Front Genet 3:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casacuberta E, Gonzalez J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22(6):1503–1517

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Lee YK, Greenhalgh DG (2008) Endogenous retroviruses in systemic response to stress signals. Shock 30(2):105–116

    Article  CAS  PubMed  Google Scholar 

  • Consortium, E. P (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotnoir-White D, Laperriere D, Mader S (2011) Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol Cell Endocrinol 334(1–2):76–82

    Article  CAS  PubMed  Google Scholar 

  • Crow TJ (2011) The missing genes: what happened to the heritability of psychiatric disorders? Mol Psychiatry 16(4):362–364

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Xie W, Brady TL, Gao J, Voytas DF (2007) Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin. Mol Cell 27(2):289–299

    Article  CAS  PubMed  Google Scholar 

  • Day DS, Luquette LJ, Park PJ, Kharchenko PV (2010) Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol 11(6):R69

    Article  PubMed  PubMed Central  Google Scholar 

  • Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB, Brockdorff N, Zakian SM (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3(6), e2521

    Article  PubMed  PubMed Central  Google Scholar 

  • Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15(8):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R (2013) Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 19(11):655–663

    Article  CAS  PubMed  Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767

    Article  CAS  PubMed  Google Scholar 

  • Fu XD (2014) Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev 1(2):190–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage FH, Muotri AR (2012) What makes each brain unique. Sci Am 306(3):26–31

    Article  PubMed  Google Scholar 

  • Gombart AF, Saito T, Koeffler HP (2009) Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2013) Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths BB, Hunter RG (2014) Neuroepigenetics of stress. Neuroscience 275:420–435

    Article  CAS  PubMed  Google Scholar 

  • Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179(3):877–887

    Article  CAS  PubMed  Google Scholar 

  • Holzman DC (2010) Aberrant chromosomes: not so random after all? J Natl Cancer Inst 102(6):368–369

    Article  PubMed  Google Scholar 

  • Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS (2009) Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci U S A 106(49):20912–20917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, McEwen BS et al (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109(43):17657–17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements 3(2), e24555

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter RG, Gagnidze K, McEwen BS, Pfaff DW (2014) Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A 112(22):6828–6833

    Article  PubMed  PubMed Central  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen BM, Jambal P, Schittone SA, Horwitz KB (2009) ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors. Mol Endocrinol 23(7):989–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7):959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3(6), e181

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4), e1003470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166

    Article  CAS  PubMed  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52(12):1048–1060

    Article  CAS  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Jin Y, Prazak L, Hammell M, Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9), e44099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Prazak L, Chatterjee N, Gruninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16(5):529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Feng F, Yang Y, Gao X, Cui J, Zhang C, Zhang F et al (2013) LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells. Cell Signal 25(2):479–489

    Article  PubMed  Google Scholar 

  • Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2(1), e2

    Article  PubMed  PubMed Central  Google Scholar 

  • Maksakova IA, Mager DL, Reiss D (2008) Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell Mol Life Sci 65(21):3329–3347

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ (2011) Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci U S A 108(7):3035–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MM, Pickett LA, VanRyzin JW, Kight KE (2015) Surprising origins of sex differences in the brain. Horm Behav 25 Epub

    Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226(4676):792–801

    Article  CAS  PubMed  Google Scholar 

  • Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP (1994) Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8(12):1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Mirkin EV, Mirkin SM (2014) To switch or not to switch: at the origin of repeat expansion disease. Mol Cell 53(1):1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora F, Segovia G, Del Arco A, de Blas M, Garrido P (2012) Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res 1476:71–85

    Article  CAS  PubMed  Google Scholar 

  • Morales JF, Snow ET, Murnane JP (2002) Environmental factors affecting transcription of the human L1 retrotransposon. I. Steroid hormone-like agents. Mutagenesis 17(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283(5407):1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318

    Article  CAS  PubMed  Google Scholar 

  • Mouse EC, Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM et al (2012) An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13(8):418

    Article  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y et al (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92(5):587–590

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1972) So much "junk" DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  • Okudaira N, Ishizaka Y, Nishio H (2014) Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 289(37):25476–25485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340(6128):91–95

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Chuma S (2012) piRNAs and their involvement in male germline development in mice. Dev Growth Differ 54(1):78–92

    Article  CAS  PubMed  Google Scholar 

  • Ponomarev I, Rau V, Eger EI, Harris RA, Fanselow MS (2010) Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35(6):1402–1411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontier DB, Gribnau J (2011) Xist regulation and function explored. Hum Genet 130(2):223–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33(45):17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T (2008) An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 18(4):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505(7483):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe HM, Trono D (2011) Dynamic control of endogenous retroviruses during development. Virology 411(2):273–287

    Article  CAS  PubMed  Google Scholar 

  • Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240

    Article  CAS  PubMed  Google Scholar 

  • Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, Aktas T et al (2013) De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 140(3):519–529

    Article  CAS  PubMed  Google Scholar 

  • Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case–control study of US military service members. Epigenomics 4(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Ryan FP (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J R Soc Med 97(12):560–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12(12):799–814

    Article  CAS  PubMed  Google Scholar 

  • Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES (2013) Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 38(9):1835–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif J, Shinkai Y, Koseki H (2013) Is there a role for endogenous retroviruses to mediate long-term adaptive phenotypic response upon environmental inputs? Philos Trans R Soc Lond B Biol Sci 368(1609):20110340

    Article  PubMed  PubMed Central  Google Scholar 

  • Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS et al (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22(12):2328–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LH, Frankel FR (1986) The induction of Alu-sequence transcripts by glucocorticoid in rat liver cells. J Steroid Biochem 25(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton KR, Baillie JK, Faulkner GJ (2011) Is somatic retrotransposition a parasitic or symbiotic phenomenon? Mob Genet Elements 1(4):279–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106(14):5569–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunter, R.G. (2016). Stress, Transposons, and the Brain Epigenome. In: Spengler, D., Binder, E. (eds) Epigenetics and Neuroendocrinology. Epigenetics and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24493-8_8

Download citation

Publish with us

Policies and ethics