Skip to main content

Supervised Object Boundary Detection Based on Structured Forests

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9208))

Abstract

Object boundary detection is an interesting and challenging topic in computer vision. Learning and combining the local, mid-level and high-level information play an important role in most of the recent approaches. However, few characteristics of a certain type of object are exploited. In this paper, we propose a novel supervised machine learning framework for object boundary detection, which makes use of the specific object features, such as boundary shape, directions and intensity. In the learning process, structured forest models are employed to tackle the high dimensional multi-class problem. Various experiment results show that our framework outperforms the competing models in the proposed data set, indicating that our framework is highly effective in modeling boundary for specific type of objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4, 51–52 (2001)

    Google Scholar 

  2. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1. IEEE (2001)

    Google Scholar 

  3. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: a learned mid-level representation for contour and object detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2013)

    Google Scholar 

  4. Arbelaez, P., et al.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Fan, J., et al.: Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10(10), 1454–1466 (2001)

    Article  MATH  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  7. He, X., Zemel, R.S., Carreira-Perpinan, M.A.: Multiscale conditional random fields for image labelling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  8. Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJCUT. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  9. Wang, Y., Ji, Q.: A dynamic conditional random field model for object segmentation in image sequences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, June 2005

    Google Scholar 

  10. Dollár, P., Zitnick, C.: Fast edge detection using structured forests. Pattern Anal. Mach. Intell. PP(99), 1 (2014)

    Google Scholar 

  11. Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 14(1), 155–168 (2013)

    Article  Google Scholar 

  12. Zou, Q., et al.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)

    Article  Google Scholar 

  13. Konishi, S., et al.: Statistical edge detection: learning and evaluating edge cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 57–74 (2003)

    Article  MathSciNet  Google Scholar 

  14. Borenstein, E., Ullman, S.: Combined top-down/bottom-up segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2109–2125 (2008)

    Article  Google Scholar 

  15. Tu, Z., et al.: Image parsing: unifying segmentation, detection, and recognition. Int. J. Comput. Vis. 63(2), 113–140 (2005)

    Article  MathSciNet  Google Scholar 

  16. Tu, Z.: Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2. IEEE (2005)

    Google Scholar 

  17. Zheng, S., Yuille, A., Zhuowen, T.: Detecting object boundaries using low-, mid-, and high-level information. Comput. Vis. Image Underst. 114(10), 1055–1067 (2010)

    Article  Google Scholar 

  18. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Dollár, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (2006)

    Google Scholar 

  20. Shi, Y., Peng, Y.: Multiple Criteria and Multiple Constraint Levels Linear Programming: Concepts, Techniques and Applications. World Scientific, New Jersey (2001)

    Book  Google Scholar 

  21. Shi, Y.: Multiple criteria optimization-based data mining methods and applications: a systematic survey. Knowl. Inf. Syst. 24(3), 369–391 (2010)

    Article  Google Scholar 

  22. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4, 34–47 (2001)

    Google Scholar 

  24. Tian, Y.J., Qi, Z.Q., Ju, X.C., Shi, Y., Liu, X.H.: Nonparallel support vector machines for pattern classification. IEEE Trans. Cybernetics 44(7), 1067–1079 (2013)

    Article  Google Scholar 

  25. Qi, Z., Tian, Y., Shi, Y.: Successive overrelaxation for laplacian support vector machine. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2320738

  26. Qi, Z., Tian, Y., Shi, Y.: Robust twin support vector machine for pattern classification. Pattern Recogn. 46(1), 305–316 (2013)

    Article  MATH  Google Scholar 

  27. Dollár, P., et al.: Integral channel features. In: BMVC, vol. 2(3) (2009)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China under Grants (Grant No. 71331005, 71110107026, 61402429). I would like to express my gratitude to my supervisor Prof. Shi and Dr. Qi who helped me a lot in studying and everyday life. I also would like to thank Jason and Limeng for the inspiring discussions and suggestions. Last my thanks would go to my girlfriend Jing, who makes my life more colorful.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiquan Qi or Yong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Meng, F., Qi, Z., Cui, L., Chen, Z., Shi, Y. (2015). Supervised Object Boundary Detection Based on Structured Forests. In: Zhang, C., et al. Data Science. ICDS 2015. Lecture Notes in Computer Science(), vol 9208. Springer, Cham. https://doi.org/10.1007/978-3-319-24474-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24474-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24473-0

  • Online ISBN: 978-3-319-24474-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics