Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows. In: 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 286–296. ACM, New York (2004)
Google Scholar
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
Google Scholar
Chapelle, O.: Active learning for parzen window classifier. In: International Workshop on Artificial Intelligence and Statistics, pp. 49–56 (2005)
Google Scholar
Cheng, Y., Chen, Z., Liu, L., Wang, J., Agrawal, A., Choudhary, A.: Feedback-driven multiclass active learning for data streams. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, CIKM 2013, San Francisco, California, USA, pp. 1311–1320. ACM, New York (2013). doi:10.1145/2505515.2505528
Chu, W., Zinkevich, M., Li, L., Thomas, A., Tseng, B.: Unbiased online active learning in data streams. In: 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA (2011)
Google Scholar
Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979)
MathSciNet
CrossRef
MATH
Google Scholar
Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Mach. Learn. 28(2–3), 133–168 (1997)
CrossRef
MATH
Google Scholar
Halchenko, Y.O., Hanke, M.: Open is not enough. Let’s take the next step: an integrated, community-driven computing platform for neuroscience. Front. Neuroinf. 6, 22 (2012)
CrossRef
Google Scholar
Harries, M.B., Sammut, C., Horn, K.: Extracting hidden context. Mach. Learn. 32, 101–126 (1998)
CrossRef
MATH
Google Scholar
Huang, S., Dong, Y.: An active learning system for mining time-changing data streams. Intell. Data Anal. 11, 401–419 (2007)
Google Scholar
Ienco, D., Bifet, A., Žliobaitė, I., Pfahringer, B.: Clustering based active learning for evolving data streams. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS, vol. 8140, pp. 79–93. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Krempl, G., Ha, C.T., Spiliopoulou, M.: Clustering-based optimised probabilistic active learning (copal). In: 18th International Conference on Discovery Science (DS), Banff (2015)
Google Scholar
Krempl, G., Kottke, D., Spiliopoulou, M.: Probabilistic active learning: towards combining versatility, optimality and efficiency. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 168–179. Springer, Heidelberg (2014)
Google Scholar
Krempl, G., Zliobaite, I., Brzezinski, D., Hllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining research. SIGKDD Explor. 16(1), 1–10 (2014)
CrossRef
Google Scholar
Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: 17th Annual Intenational ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1–10 (1994)
Google Scholar
Lindstrom, P., Delany, S.J., Namee, B.M.: Handling concept drift in a text data stream constrained by high labelling cost. In: FLAIRS Conference (2010)
Google Scholar
Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in Neural Information Processing Systems 14, pp. 841–848. MIT Press (2002)
Google Scholar
Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: International Conference on Machine Learning, ICML 2001, pp. 441–448. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Google Scholar
Ryu, J.W., Kantardzic, M.M., Kim, M.-W., Ra Khil, A.: An efficient method of building an ensemble of classifiers in streaming data. In: Srinivasa, S., Bhatnagar, V. (eds.) BDA 2012. LNCS, vol. 7678, pp. 122–133. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Settles, B.: Active Learning Literature Survey. University of Wisconsin, Madison (2010)
Google Scholar
Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114 (2012)
Google Scholar
Tomanek, K., Olsson, F.: A web survey on the use of active learning to support annotation of text data. In: NAACL HLT Workshop on Active Learning for Natural Language Processing, Stroudsburg, PA, USA, pp. 45–48 (2009)
Google Scholar
Wang, L., Luo, G., Yi, K., Cormode, G.: Quantiles over data streams: an experimental study. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 737–748. ACM, New York (2013)
Google Scholar
Wang, P., Zhang, P., Guo, L.: Mining multi-label data streams using ensemble-based active learning. In: SIAM Conference on Data Mining, pp. 1131–1140 (2012)
Google Scholar
Zhu, X., Zhang, P., Lin, X., Shi, Y.: Active learning from stream data using optimal weight classifier ensemble. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(6), 1607–1621 (2010)
CrossRef
Google Scholar
Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27–39 (2014)
CrossRef
Google Scholar