Skip to main content

Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks

Part of the Lecture Notes in Computer Science book series (LNBI,volume 8623)

Abstract

A proper ridge estimator of the inverse covariance matrix is presented. We study the properties of this estimator in relation to other ridge-type estimators. In the context of Gaussian graphical modeling, we compare the proposed estimator to the graphical lasso. This work is a brief exposé of the technical developments in [1], focussing on applications in gene-gene interaction network reconstruction.

Keywords

  • Gaussian graphical model
  • Gene-gene interaction networks
  • Multivariate normal
  • Penalized estimation
  • Precision matrix

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24462-4_15
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-24462-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Wieringen, W.N., Peeters, C.F.W.: Ridge Estimation of Inverse Covariance Matrices From High-Dimensional Data. arXiv:1403.0904 [stat.ME] (2014)

    Google Scholar 

  2. Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 55–67 (1970)

    CrossRef  MATH  Google Scholar 

  3. Schäfer, J., Strimmer, K.: A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Stat. Appl. Genet. Mo. B. 4, Article 32 (2005)

    Google Scholar 

  4. Ledoit, O., Wolf, M.: A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices. J. Multivariate Anal. 88, 365–411 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Fisher, T.J., Sun, X.: Improved Stein-Type Shrinkage Estimators for the High-Dimensional Multivariate Normal Covariance Matrix. Comput. Stat. Data An. 55, 1909–1918 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Vujačić, I., Abbruzzo, A., Wit, E.C.: A Computationally Fast Alternative to Cross-Validation in Penalized Gaussian Graphical Models. arXiv: 1309.621v2 [stat.ME] (2014)

    Google Scholar 

  7. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics 9, 432–441 (2008)

    CrossRef  MATH  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: glasso: Graphical Lasso-Estimation of Gaussian Graphical Models. R package, version 1.8 (2014), http://cran.r-project.org/web/packages/glasso/index.html

  10. Schröder, M., Haibe-Kains, B., Culhane, A., Sotiriou, C., Bontempi, G., Quackenbush, J.: breastCancerMAINZ; breastCancerTRANSBIG; breastCancerUNT; breastCancerUPP; breastCancerVDX. R packages, versions 1.0.6 (2011), http://compbio.dfci.harvard.edu/

  11. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)

    CrossRef  Google Scholar 

  12. The Cancer Genome Atlas, http://cancergenome.nih.gov/

  13. The National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/gene

  14. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011)

    Google Scholar 

  15. Peeters, C.F.W., van Wieringen, W.N.: rags2ridges: Ridge Estimation of Precision Matrices from High-Dimensional Data. R package, version 1.3 (2014), http://cran.r-project.org/web/packages/rags2ridges/index.html

  16. Comprehensive R Archive Network, http://www.R-project.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wessel N. van Wieringen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van Wieringen, W.N., Peeters, C.F.W. (2015). Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24462-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24461-7

  • Online ISBN: 978-3-319-24462-4

  • eBook Packages: Computer ScienceComputer Science (R0)