Molecular Tools for Monitoring and Source-Tracking Salmonella in Wildlife and the Environment

  • Anita Wright
  • Amber Ginn
  • Zhiyao Luo
Part of the Food Microbiology and Food Safety book series (FMFS)


Salmonella causes an estimated 1.2 million cases of gastroenteritis per year (Scallan et al. 2011) or 16.42 illnesses per 100,000 persons (Gilliss et al. 2013). Salmonellosis is also associated with the largest incidence of food-associated hospitalizations and deaths (Gilliss et al. 2013). Furthermore, no significant change in the incidence of Salmonella infections has occurred since the beginning of surveillance during 1996–1998 (Gould et al. 2013; Gilliss et al. 2013). Many foodborne diseases, including salmonellosis, were once classified as strictly zoonotic infections because they were mostly attributed to meats and products derived from domesticated animals (Chisholm et al. 1999; van Duijkeren et al. 2002). However, recent outbreaks of salmonellosis from produce grown on farms with minimal or no contact with domesticated livestock exemplify the contribution of environmental reservoirs of infections (Gould et al. 2011; Hanning et al. 2009; Danyluk et al. 2007). In fact, the number of illnesses per outbreak is often greater for produce than for any other food product (Franz and van Bruggen 2008). Therefore, wildlife as a source of preharvest contamination of produce with human pathogens is under consideration, including reptiles, amphibians, and birds that may harbor potentially virulent strains of Salmonella (Gorski et al. 2013; Reche et al. 2003; Pfleger et al. 2003).


Environmental health Microarray Molecular epidemiology PCR Pulsed-field gel electrophoresis Salmonella Sample preparation Source tracking Whole genome sequencing Wildlife 


  1. Achtman M, Wain J, Weill FX et al (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8(6):e1002776. doi: 10.1371/journal.ppat.1002776 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allard MW, Luo Y, Strain E et al (2013) On the evolutionary history, population genetics and diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004. PLoS One 8(1):e55254. doi: 10.1371/journal.pone.0055254 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Altmann A, Weber P, Bader D et al (2012) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum Genet 131(10):1541–1554. doi: 10.1007/s00439-012-1213-z PubMedCrossRefGoogle Scholar
  4. APHA (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  5. Barak JD, Liang AS (2008) Role of soil, crop debris, and a plant pathogen in Salmonella contamination of tomato plants. PLoS One 3(2):e1657PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barrett TJ, Gerner-Smidt P, Swaminathan B (2006) Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis 3(1):20–31. doi: 10.1089/fpd.2006.3.20 PubMedCrossRefGoogle Scholar
  7. Basel RM, Richter ER, Banwart GJ (1983) Monitoring microbial numbers in food by density centrifugation. Appl Environ Microbiol 45(3):1156–1159PubMedPubMedCentralGoogle Scholar
  8. Behravesh CB, Mody RK, Jungk J et al (2011) 2008 outbreak of Salmonella Saintpaul infections associated with raw produce. N Engl J Med 364(10):918–927. doi: 10.1056/NEJMoa1005741 CrossRefGoogle Scholar
  9. Bisha B, Perez-Mendez A, Danyluk MD et al (2011) Evaluation of modified moore swabs and continuous flow centrifugation for concentration of Salmonella and Escherichia coli O157:H7 from large volumes of water. J Food Prot 74(11):1934–1937. doi: 10.4315/0362-028x.jfp-11-133 PubMedCrossRefGoogle Scholar
  10. Bouchet V, Huot H, Goldstein R (2008) Molecular genetic basis of ribotyping. Clin Microbiol Rev 21(2):262. doi: 10.1128/cmr.00026-07 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buchholz U, Bernard H, Werber D et al (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365(19):1763–1770. doi: 10.1056/NEJMoa1106482 PubMedCrossRefGoogle Scholar
  12. Cao G, Meng J, Strain E et al (2013) Phylogenetics and differentiation of Salmonella Newport lineages by whole genome sequencing. PLoS One 8(2):e55687. doi: 10.1371/journal.pone.0055687 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chenu JW, Cox JM, Pavic A (2012) Classification of Salmonella enterica serotypes from Australian poultry using repetitive sequence-based PCR. J Appl Microbiol 112(1):185–196. doi: 10.1111/j.1365-2672.2011.05172.x PubMedCrossRefGoogle Scholar
  14. Chisholm SA, Crichton PB, Knight HI et al (1999) Molecular typing of Salmonella serotype Thompson strains isolated from human and animal sources. Epidemiol Infect 122(1):33–39. doi: 10.1017/s0950268898001836 PubMedPubMedCentralCrossRefGoogle Scholar
  15. D’Aoust J-Y, John M (2007) Salmonella species. In: Doyle M-P, Beuchat L-R (eds) Food microbiology—fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 187–236CrossRefGoogle Scholar
  16. Danyluk MD, Jones TM, Abd SJ et al (2007) Prevalence and amounts of Salmonella found on raw California almonds. J Food Prot 70(4):820–827PubMedCrossRefGoogle Scholar
  17. den Bakker HC, Allard MW, Bopp D et al (2014) Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 20(8):1306–1314. doi: 10.3201/eid2008.131399 CrossRefGoogle Scholar
  18. Dereeper A, Guignon V, Blanc G et al (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. doi: 10.1093/nar/gkn180 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi: 10.1186/1471-2105-5-113 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Escartin EF, Lozano JS, Garcia OR et al (2002) Potential Salmonella transmission from ornamental fountains. J Environ Health 65(4):9–12Google Scholar
  21. Espy MJ, Uhl JR, Sloan LM et al (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256. doi: 10.1128/cmr.19.1.165-256.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fabre L, Zhang J, Guigon G et al (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS One 7(5):e36995. doi: 10.1371/journal.pone.0036995 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Farber JM, Sharpe AN (1984) Improved bacterial recovery by membrane filters in the presence of food debris. Appl Environ Microbiol 48(2):441–443PubMedPubMedCentralGoogle Scholar
  24. FDA (2013) Food Safety Modernization Act (FSMA). Scholar
  25. Fakhr MK, Nolan LK, Logue CM (2005) Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing Salmonella enterica serovar Typhimurium. J Clin Microbiol 43(5):2215–2219PubMedPubMedCentralCrossRefGoogle Scholar
  26. Foley SL, Lynne AM, Nayak R (2009) Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol 9(4):430–440. doi: 10.1016/j.meegid.2009.03.004 PubMedCrossRefGoogle Scholar
  27. Foley SL, Zhao S, Walker RD (2007) Comparison of molecular typing methods for the differentiation of Salmonella foodborne pathogens. Foodborne Pathog Dis 4(3):253–276. doi: 10.1089/fpd.2007.0085 PubMedCrossRefGoogle Scholar
  28. Franz E, van Bruggen AHC (2008) Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol 34(3–4):143–161. doi: 10.1080/10408410802357432 PubMedCrossRefGoogle Scholar
  29. Gibson KE, Schwab KJ (2011) Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water. Appl Environ Microbiol 77(1):385–391. doi: 10.1128/aem.01164-10 PubMedCrossRefGoogle Scholar
  30. Gilliss D, Cronquist AB, Cartter M et al (2013) Incidence and trends of infection with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 US sites, 1996-2012. MMWR Morb Mortal Wkly Rep 62(15):283–287Google Scholar
  31. Gilson E, Perrin D, Clement JM et al (1986) Palindromic units from E. coli as binding sites for a chromoid-associated protein. FEBS Lett 206(2):323–328PubMedCrossRefGoogle Scholar
  32. Gorski L, Jay-Russell MT, Liang AS et al (2013) Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California central coast. Foodborne Pathog Dis 10(6):540–548. doi: 10.1089/fpd.2012.1372 PubMedCrossRefGoogle Scholar
  33. Gorski L, Parker CT, Liang A et al (2011) Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Appl Environ Microbiol 77(8):2734–2748. doi: 10.1128/aem.02321-10 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goto DK, Yan T (2011) Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii. Appl Environ Microbiol 77(12):3988–3997. doi: 10.1128/aem.02140-10 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gould LH, Nisler AL, Herman KM et al (2011) Surveillance for foodborne disease outbreaks-United States, 2008 (Reprinted from MMWR, vol 60, pg 1197-1202, 2011). JAMA 306(20):2212–2214Google Scholar
  36. Gould LH, Walsh KA, Vieira AR et al (2013) Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR Surveill Summ 62(2):1–34PubMedGoogle Scholar
  37. Greene SK, Daly ER, Talbot EA et al (2008) Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol Infect 136(2):157–165. doi: 10.1017/s095026880700859x PubMedCrossRefGoogle Scholar
  38. Hanning IB, Nutt JD, Ricke SC (2009) Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathog Dis 6(6):635–648. doi: 10.1089/fpd.2008.0232 PubMedCrossRefGoogle Scholar
  39. Hawkey J, Edwards DJ, Dimovski K et al (2013) Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 14(1):800, info:pmid/24245509PubMedPubMedCentralCrossRefGoogle Scholar
  40. Healy M, Huong J, Bittner T et al (2005) Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43(1):199–207. doi: 10.1128/jcm.43.1.199-207.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Heithoff DM, Shimp WR, Lau PW et al (2008) Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 74(6):1757–1766. doi: 10.1128/aem.02740-07 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Higgins CF, Ames GF-L, Barnes WM et al (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298(5876):760–762. doi: 10.1038/298760a0 PubMedCrossRefGoogle Scholar
  43. Higgins CF, McLaren RS, Newbury SF (1988) Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72(1–2):3–14PubMedCrossRefGoogle Scholar
  44. Hu Q, Coburn B, Deng W et al (2008) Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J Clin Microbiol 46(4):1330–1336. doi: 10.1128/jcm.01255-07 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ijabadeniyi OA, Debusho LK, Vanderlinde M et al (2011) Irrigation water as a potential preharvest source of bacterial contamination of vegetables. J Food Saf 31(4):452–461. doi: 10.1111/j.1745-4565.2011.00321.x CrossRefGoogle Scholar
  46. Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575PubMedCrossRefGoogle Scholar
  47. Jasson V, Jacxsens L, Luning P et al (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27(6):710–730. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  48. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914PubMedPubMedCentralGoogle Scholar
  49. Kerouanton A, Marault M, Lailler R et al (2007) Pulsed-field gel electrophoresis subtyping database for foodborne Salmonella enterica serotype discrimination. Foodborne Pathog Dis 4(3):293–303. doi: 10.1089/fpd.2007.0090 PubMedCrossRefGoogle Scholar
  50. Kim S, Frye JG, Hu J et al (2006) Multiplex PCR-based method for identification of common clinical serotypes of Salmonella enterica subsp. enterica. J Clin Microbiol 44(10):3608–3615. doi: 10.1128/jcm.00701-06 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kotetishvili M, Stine OC, Kreger A, Morris JG Jr, Sulakvelidze A (2002) Multilocus sequence typing for characterization of clinical and environmental Salmonella strains. J Clin Microbiol 40:1626–1635PubMedPubMedCentralCrossRefGoogle Scholar
  52. Leader B, Frye J, Hu J et al (2009) High-throughput molecular determination of Salmonella enterica serovars by use of multiplex PCR and capillary electrophoresis analysis. J Clin Microbiol 47(5):1290–1299. doi: 10.1128/JCM.02095-08 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Leekitcharoenphon P, Lukjancenko O, Friis C et al (2012) Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics 13:88. doi: 10.1186/1471-2164-13-88 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leekitcharoenphon P, Nielsen EM, Kaas RS et al (2014) Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One 9(2):e87991. doi: 10.1371/journal.pone.0087991 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Li B, Vellidis G, Liu H et al (2014a) Diversity and antimicrobial resistance of Salmonella enterica isolated from surface water in southeastern U.S. Appl Environ Microbiol 80:6355–6365PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li B, Vellidis G, Liu H et al (2014b) Diversity and antimicrobial resistance of Salmonella enterica isolated from surface water in Southeastern U.S. Appl Environ Microbiol. doi: 10.1128/aem.02063-14 Google Scholar
  57. Lim H, Lee KH, Hong CH et al (2005) Comparison of four molecular typing methods for the differentiation of Salmonella spp. Int J Food Microbiol 105(3):411–418. doi: 10.1016/j.ijfoodmicro.2005.03.019 PubMedCrossRefGoogle Scholar
  58. Lukinmaa S, Nakari UM, Eklund M et al (2004) Application of molecular genetic methods in diagnostics and epidemiology of food-borne bacterial pathogens. APMIS 112(11–12):908–929. doi: 10.1111/j.1600-0463.2004.apm11211-1213.x PubMedCrossRefGoogle Scholar
  59. Luo Z, Gu G, Giurcanu MC et al (2014) Development of a novel cross-streaking method for isolation, confirmation, and enumeration of Salmonella from irrigation ponds. J Microbiol Methods 101:86–92. doi: 10.1016/j.mimet.2014.03.012 PubMedCrossRefGoogle Scholar
  60. Maatallah M, Bakhrouf A, Habeeb MA et al (2013) Four genotyping schemes for phylogenetic analysis of pseudomonas aeruginosa: comparison of their congruence with multi-locus sequence typing. PLOS One 8(12):e82069. doi: 10.1371/journal.pone.0082069 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Madsen M (1994) Enumeration of Salmonella in crocodile pond water by direct plate counts and by the MPN technique. Water Res 28(9):2035–2037. doi: 10.1016/0043-1354(94)90180-5 CrossRefGoogle Scholar
  62. Magee PT, Bowdin L, Staudinger J (1992) Comparison of molecular typing methods for Candida albicans. J Clin Microbiol 30(10):2674–2679PubMedPubMedCentralGoogle Scholar
  63. Mandal PK, Biswas AK, Choi K et al (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6(2):87–102. doi: 10.3923/ajft.2011.87.102 CrossRefGoogle Scholar
  64. Martin B, Humbert O, Camara M et al (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20(13):3479–3483PubMedPubMedCentralCrossRefGoogle Scholar
  65. McEgan R, Rodrigues CAP, Sbodio A et al (2013) Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration. Lett Appl Microbiol 56(2):88–94. doi: 10.1111/lam.12016 PubMedCrossRefGoogle Scholar
  66. McKillip JL, Drake M (2004) Real-time nucleic acid-based detection methods for pathogenic bacteria in food. J Food Prot 67(4):823–832PubMedCrossRefGoogle Scholar
  67. McLoughlin KS (2011) Microarrays for pathogen detection and analysis. Brief Funct Genomics 10(6):342–353. doi: 10.1093/bfgp/elr027 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mull B, Hill VR (2009) Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and real-time PCR. Appl Environ Microbiol 75(11):3593–3597. doi: 10.1128/aem.02750-08 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nielsen R, Paul JS, Albrechtsen A et al (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12(6):443–451. doi: 10.1038/nrg2986 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Odumeru JA, León-Velarde CG (2012) Salmonella detection methods for food and food ingredients. In: Mahmoud BSM (ed) Salmonella—a dangerous foodborne pathogen. InTech, Rijeka, Croatia. doi: 10.5772/29526 Google Scholar
  71. Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37(6):1661–1669PubMedPubMedCentralGoogle Scholar
  72. Pachepsky Y, Shelton DR, McLain JET et al (2011) Irrigation waters as a source of pathogenic microorganisms in produce: a review. Adv Agron 113(113):73–138. doi: 10.1016/b978-0-12-386473-4.00007-5 Google Scholar
  73. Patchanee P, Molla B, White N et al (2010) Tracking Salmonella contamination in various watersheds and phenotypic and genotypic diversity. Foodborne Pathog Dis 7(9):1113–1120. doi: 10.1089/fpd.2010.0572 PubMedCrossRefGoogle Scholar
  74. Payne MJ, Campbell S, Patchett RA et al (1992) The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli Listeria and Salmonella spp from pure cultures and foods. J Appl Bacteriol 73(1):41–52PubMedCrossRefGoogle Scholar
  75. Pettengill JB, Timme RE, Barrangou R et al (2014) The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica. PeerJ 2:e340. doi: 10.7717/peerj.340 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pfleger S, Benyr G, Sommer R et al (2003) Pattern of Salmonella excretion in amphibians and reptiles in a vivarium. Int J Hyg Environ Health 206(1):53–59. doi: 10.1078/1438-4639-00184 PubMedCrossRefGoogle Scholar
  77. Pianetti A, Sabatini L, Bruscolini F et al (2004) Faecal contamination indicators, Salmonella, Vibrio and Aeromonas in water used for the irrigation of agricultural products. Epidemiol Infect 132(2):231–238. doi: 10.1017/s095026880300181x CrossRefGoogle Scholar
  78. Plusquellec A, Beucher M, Lelay C et al (1994) Uptake and retention of Salmonella by bivalve shellfish. J Shellfish Res 13(1):221–227Google Scholar
  79. Polo F, Figueras MJ, Inza I et al (1998) Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol Lett 160(2):253–256. doi: 10.1111/j.1574-6968.1998.tb12919.x PubMedCrossRefGoogle Scholar
  80. Porwollik S, Boyd EF, Choy C et al (2004) Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 186(17):5883–5898. doi: 10.1128/jb.186.17.5883-5898.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663. doi: 10.1099/mic.0.27437-0 Google Scholar
  82. Rademaker JLW, Hoste B, Louws FJ et al (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677PubMedCrossRefGoogle Scholar
  83. Rajabi M, Jones M, Hubbard M et al (2011) Distribution and genetic diversity of Salmonella enterica in the upper Suwannee river. Int J Microbiol. doi: 10.1155/2011/461321 PubMedPubMedCentralGoogle Scholar
  84. Ranieri ML, Shi CL, Switt AIM et al (2013) Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction. J Clin Microbiol 51(6):1786–1797. doi: 10.1128/jcm.03201-12 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rasooly A, Herold KE (2008) Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 5(4):531–550. doi: 10.1089/fpd.2008.0119 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Reche MP, Echeita MA, de los Rios JEG et al (2003) Comparison of phenotypic and genotypic markers for characterization of an outbreak of Salmonella serotype Havana in captive raptors. J Appl Microbiol 94(1):65–72. doi: 10.1046/j.1365-2672.2003.01791.x PubMedCrossRefGoogle Scholar
  87. Roussel S, Felix B, Colaneri C et al (2010) Semi-automated repetitive-sequence-based polymerase chain reaction compared to pulsed-field gel electrophoresis for Listeria monocytogenes subtyping. Foodborne Pathog Dis 7(9):1005–1012. doi: 10.1089/fpd.2009.0450 PubMedCrossRefGoogle Scholar
  88. Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17(1):7–15. doi: 10.3201/eid1701.P11101 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schrader KN, Fernandez-Castro A, Cheung WKW et al (2008) Evaluation of commercial antisera for Salmonella serotyping. J Clin Microbiol 46(2):685–688. doi: 10.1128/jcm.01808-07 PubMedCrossRefGoogle Scholar
  90. Shaw SJ, Blais BW, Nundy DC (1998) Performance of the dynabeads anti-Salmonella system in the detection of Salmonella species in foods, animal feeds, and environmental samples. J Food Prot 61(11):1507–1510PubMedCrossRefGoogle Scholar
  91. Shi C, Singh P, Ranieri ML et al (2013) Molecular methods for serovar determination of Salmonella. Crit Rev Microbiol. doi: 10.3109/1040841x.2013.837862 PubMedGoogle Scholar
  92. Shin HH, Hwang BH, Seo JH et al (2014) Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray. Appl Environ Microbiol 80(1):366–373. doi: 10.1128/aem.02978-13 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stone GG, Oberst RD, Hays MP et al (1994) Detection of Salmonella serovars from clinical-samples by enrichment broth cultivation PCR procedure. J Clin Microbiol 32(7):1742–1749PubMedPubMedCentralGoogle Scholar
  94. Strawn LK, Danyluk MD, Worobo RW et al (2014) Distributions of Salmonella subtypes differ between two US produce-growing regions. Appl Environ Microbiol 80(13):3982–3991. doi: 10.1128/aem.00348-14 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi: 10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-filed gel electrophoresis-criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239PubMedPubMedCentralGoogle Scholar
  97. Touchon M, Rocha EP (2010) The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 5(6):e11126. doi: 10.1371/journal.pone.0011126 PubMedPubMedCentralCrossRefGoogle Scholar
  98. van Belkum A, Tassios PT, Dijkshoorn L et al (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13:1–46. doi: 10.1111/j.1469-0691.2007.01786.x PubMedCrossRefGoogle Scholar
  99. van Duijkeren E, Wannet WJB, Houwers DJ et al (2002) Serotype and phage type distribution of Salmonella strains isolated from humans, cattle, pigs, and chickens in the Netherlands from 1984 to 2001. J Clin Microbiol 40(11):3980–3985. doi: 10.1128/jcm.40.11.3980-3985.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA-sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19(24):6823–6831. doi: 10.1093/nar/19.24.6823 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wattiau P, Boland C, Bertrand S (2011) Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol 77(22):7877–7885. doi: 10.1128/aem.05527-11 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Weigel RM, Qiao BZ, Teferedegne B et al (2004) Comparison of pulsed field gel electrophoresis and repetitive sequence polymerase chain reaction as genotyping methods for detection of genetic diversity and inferring transmission of Salmonella. Vet Microbiol 100(3–4):205–217. doi: 10.1016/j.vetmic.2004.02.009 PubMedCrossRefGoogle Scholar
  103. Winfield MD, Groisman EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69(7):3687–3694. doi: 10.1128/Aem.69.7.3687-3694.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wise MG, Siragusa GR, Plumblee J et al (2009) Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. J Microbiol Methods 76(1):18–24. doi: 10.1016/j.mimet.2008.09.006 PubMedCrossRefGoogle Scholar
  105. Yang Y, Ames GF (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci U S A 85(23):8850–8854PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Food Science and Human Nutrition DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations