Overview: Foodborne Pathogens in Wildlife Populations

Part of the Food Microbiology and Food Safety book series (FMFS)


Numerous bacterial and parasitic pathogens may be transmitted through food and included in that group are zoonotic pathogens that not only proliferate within domesticated animals but may also be resident within wildlife. As a result of wildlife being a pathogen reservoir and the ability of this animal group to easily intrude on farms, wildlife contributes to the maintenance of infections on domestic farms as well as serves as an environmental source of fresh produce contamination. To discern the degree to which wildlife represents a food safety risk, this overview first summarizes those documented incidents in which contaminated wildlife has been directly or indirectly associated with human illness. It continues with providing a set of tables that document the results of studies directed at assessing the prevalence of bacterial, parasitic, and viral pathogen contamination in mammals, birds, and amphibians and reptiles. To understand the strengths and limitations of those surveillance studies, discussion is included that describes how sample source, cultivation conditions, sample size and number, and specificity of the detection method may impact the data collected. Discussion on factors that contribute to pathogen transmission to wildlife are also presented and include the physiological state of the animal, behavioral features of the animal that contribute to intra- and interspecies interactions, seasonal effects on transmission, and management practices applied to wildlife or domestic animals. The overview concludes with a section directed at discussing other drawbacks to pathogen contamination of wildlife and includes contamination of water sources and wildlife serving as a reservoir for antibiotic resistance and emerging pathogens.


Campylobacter Cryptosporidium Escherichia coli Foodborne pathogens Foodborne disease outbreak Listeria monocytogenes Prevalence Salmonella Trichinella Wildlife Zoonosis 


  1. Ahn CK, Russo AJ, Howell KR et al (2009) Deer sausage: a newly identified vehicle of transmission of Escherichia coli O157:H7. J Pediatr 155:587–589PubMedCrossRefGoogle Scholar
  2. Ajzenberg D, Year H, Marty P et al (2009) Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in immunocompromised patients and correlation with clinical findings. J Infect Dis 199:1155–1167PubMedCrossRefGoogle Scholar
  3. Aminabadi P, Smith L, Adams MP et al (2013) Evaluation of foodborne pathogens in aquatic wildlife and irrigation ponds in Southeastern Georgia. Abstr Annu Mtg Int Assoc Food Prot, Charlotte, NC, P3–125Google Scholar
  4. Andrés-Barranco S, Vico JP, Garrido V et al (2014) Role of wild bird and rodents in the epidemiology of subclinical Salmonellosis in finishing pigs. Foodborne Pathog Dis 11:689–697PubMedCrossRefGoogle Scholar
  5. Atwill ER, Jay-Russell M, Li X et al (2012) Methodological and epidemiological concerns when comparing microbial food safety food risks from wildlife, livestock, and companion animals. In: Timm RM (ed) Proceedings of the 25th vertebrate pest conference. Western Center for Food Safety, University of California, Davis, CA, pp 101–103Google Scholar
  6. Backhans A, Fellström C, Lambertz ST (2011) Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseutotuberculosis in small wild rodents. Epidemiol Infect 139:1230–1238PubMedCrossRefGoogle Scholar
  7. Backhans A, Jacobson M, Hansson I et al (2013) Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol Infect 141:1885–1891PubMedCrossRefGoogle Scholar
  8. Barber DA, Bahnson PB, Isaacson R et al (2002) Distribution of Salmonella in swine production ecosystems. J Food Prot 65:1861–1868PubMedCrossRefGoogle Scholar
  9. Bardiau M, Grégoire F, Muylaert A et al (2010) Enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and verotoxigenic (VTEC) Escherichia coli in wild cervids. J Appl Microbiol 109:2214–2222PubMedCrossRefGoogle Scholar
  10. Batz MB, Hoffman S, Morris JG Jr (2012) Ranking in the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 75:1278–1291PubMedCrossRefGoogle Scholar
  11. Benjamin L, Atwill ER, Jay-Russell M et al (2013) Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. Int J Food Microbiol 165:65–76PubMedCrossRefGoogle Scholar
  12. Benskin CMH, Wilson K, Jones K et al (2009) Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev 84:349–373PubMedCrossRefGoogle Scholar
  13. Bentz T, Lapidge S, Dall D et al (2007) Managing starlings in Australia – can DRC-1339 be the answer? In: Witmer GW, Pitt WC, Fagerstone KA (eds) Managing vertebrate invasive species: proceedings of an international symposium. USDA/APHIS/WS, National Wildlife Research Center, Fort Collins, CO, pp 361–364Google Scholar
  14. Berge AJ, Delwiche MJ, Gorenzel WP et al (2007) Sonic broadcast unit for bird control in vineyards. Appl Eng Agric 23:819–825CrossRefGoogle Scholar
  15. Berger CN, Sodha SV, Shaw RK et al (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397PubMedCrossRefGoogle Scholar
  16. Blanco Crivelli X, Rumi MV, Carfagnini JC et al (2012) Synanthropic rodents as possible reservoirs of shigatoxigenic Escherichia coli strains. Front Cell Infect Microbiol 2:Article 134PubMedCrossRefGoogle Scholar
  17. Borchard P, Wright IA, Eldridge DJ (2010) Wombats and domestic livestock as potential vectors of Cryptosporidium and Giardia in an agricultural riparian area. Aust J Zool 58:150–153CrossRefGoogle Scholar
  18. Briones V, Téllez S, Goyache J et al (2004) Salmonella diversity associated with wild reptiles and amphibians in Spain. Environ Microbiol 6:868–871PubMedCrossRefGoogle Scholar
  19. Burke R, Masuoka P, Murrell KD (2008) Swine Trichinella infection and geographic information system tools. Emerg Infect Dis 14:1109–1111Google Scholar
  20. Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors for Clostridium difficile PCR ribotypes O78 and O45. Vet Microbiol 160:256–258PubMedCrossRefGoogle Scholar
  21. Callaway TR, Edrington TS, Nisbet DJ (2014) Isolation of Escherichia coli O157:H7 and Salmonella from migratory brown-headed cowbirds (Molothrus ater), common grackles (Quiscalus quiscula), and cattle egrets (Bubulcus ibis). Foodborne Pathog Dis 11:791–794PubMedCrossRefGoogle Scholar
  22. Candela MG, Serrano E, Sevila J et al (2014) Pathogens of zoonotic and biological importance in roe deer (Capreolus capreolus): Seroprevalence in an agro-system population in France. Res Vet Sci 96:254–259PubMedCrossRefGoogle Scholar
  23. Carlson JC, Franklin AB, Hyatt DR et al (2011) The role of starlings in the spread of Salmonella within concentrated animal feeding operations. J Appl Ecol 48:479–486CrossRefGoogle Scholar
  24. CDC [Centers for Disease Control and Prevention] (2013) Table 5. FoodNet number and incidence of Salmonella infections by serotype 2013. Foodborne Diseases Active Surveillance Network (FoodNet). Accessed 5 Nov 2014
  25. Chandran A, Mazumder A (2014) Occurrence of diarrheagenic virulence genes and genetic diversity in Escherichia coli isolates from fecal material of various avian hosts in British Columbia, Canada. Appl Environ Microbiol 80:1933–1940PubMedPubMedCentralCrossRefGoogle Scholar
  26. Čížek A, Alexa P, Literák I et al (1999) Shiga toxin-producing Escherichia coli O157 in feedlot cattle and Norwegian rats from a large-scale farm. Lett Appl Microbiol 28:435–439PubMedCrossRefGoogle Scholar
  27. Čížek A, Literák I, Scheer P (2000) Survival of Escherichia coli O157 in faeces of experimentally infected rats and domestic pigeons. Lett Appl Microbiol 31:349–352Google Scholar
  28. Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999PubMedPubMedCentralCrossRefGoogle Scholar
  29. Compton JA, Baney JA, Donaldson SC et al (2008) Salmonella infections in the common raccoon (Procyon lotor) in Western Pennsylvania. J Clin Microbiol 46:3084–3086PubMedPubMedCentralCrossRefGoogle Scholar
  30. Concepción Porrero M, Mentaberre G, Sánchez S et al (2013) Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Vet J 198:127–130PubMedCrossRefGoogle Scholar
  31. Cooper SM, Scott HM, de la Garza GR et al (2010) Distribution and interspecies contact of feral swine and cattle on rangeland in South Texas: Implications for disease transmission. J Wildl Dis 46:152–164PubMedCrossRefGoogle Scholar
  32. Cowled BD, Ward MP, Laffan SW et al (2012) Integrating survey and molecular approaches to better understand wildlife disease ecology. PLoS One 7, e46310PubMedPubMedCentralCrossRefGoogle Scholar
  33. Daszak P, Zambrana-Torrelio C, Bogich TL et al (2013) Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci 110:3681–3688PubMedCrossRefGoogle Scholar
  34. De Craeye S, Speybroeck N, Ajzenberg D et al (2011) Toxoplasma gondii and Neospora caninum in wildlife: common parasites in Belgian foxes and Cervidae? Vet Parasitol 178:64–69PubMedCrossRefGoogle Scholar
  35. De Herdt P, Devriese L (2000) Pigeons. In: Tully TN, Lawton MPC, Dorrestein GM (eds) Avian medicine. Butterworth-Heinemann Ltd., Oxford, pp 320–322Google Scholar
  36. Díaz S, Vidal D, Herrera-León S et al (2011) Sorbitol-fermenting, β-glucuronidase-positive, Shiga toxin-negative Escherichia coli O157:H7 in free-ranging red deer in south-central Spain. Foodborne Pathog Dis 8:1313–1315PubMedCrossRefGoogle Scholar
  37. Díaz-Sánchez S, Sánchez S, Herrera-León S et al (2013) Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Vet Microbiol 163:274–281PubMedCrossRefGoogle Scholar
  38. Drake M, Amadi V, Zieger U et al (2013) Prevalence of Salmonella spp. in cane toads (Bufo marinus) from Grenada, West Indies, and their antimicrobial susceptibility. Zoonoses Public Health 60:437–441PubMedCrossRefGoogle Scholar
  39. Eggert M, Stüber E, Heurich M et al (2013) Detection and characterization of Shiga toxin-producing Escherichia coli in faeces and lymphatic tissue of free-ranging deer. Epidemiol Infect 141:251–259PubMedCrossRefGoogle Scholar
  40. Epstein JH, Field HE, Luby S et al (2006) Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 8:59–65PubMedCrossRefGoogle Scholar
  41. Farooq S, Hussain I, Mir MA et al (2009) Isolation of atypical enteropathogenic Escherichia coli and Shiga toxin 1 and 2f-producing Escherichia coli from avian species in India. Lett Appl Microbiol 48:692–697PubMedGoogle Scholar
  42. Ferens WA, Hovde CJ (2011) Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 8:465–487PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fresno M, Barrera V, Gornall V et al (2013) Identification of diverse Salmonella serotypes, virulotypes, and antimicrobial resistance phenotypes in waterfowl from Chile. Vector Borne Zoonotic Dis 12:884–887CrossRefGoogle Scholar
  44. García-Sánchez A, Sánchez S, Rubio R et al (2007) Presence of Shiga toxin-producing E. coli O157:H7 in a survey of wild artiodactyls. Vet Microbiol 121:373–377PubMedCrossRefGoogle Scholar
  45. Gardner TJ, Fitzgerald C, Xavier C et al (2011) Outbreak of campylobacteriosis associated with consumption of raw peas. Clin Infect Dis 53:26–32PubMedCrossRefGoogle Scholar
  46. Gargiulo A, Russo TP, Schettini R et al (2014) Occurrence of enteropathogenic bacteria in urban pigeons (Columba livia) in Italy. Vector Borne Zoonotic Dis 14:251–255PubMedCrossRefGoogle Scholar
  47. Gay N, Le Hello S, Weill F-X et al (2014) Salmonella serotypes in reptiles and humans, French Guiana. Vet Microbiol 170:167–171PubMedCrossRefGoogle Scholar
  48. Gilbreath JJ, Shields MS, Smith RL et al (2009) Shiga toxins, and the genes encoding them, in fecal samples from native Idaho ungulates. Appl Environ Microbiol 75:862–865PubMedCrossRefGoogle Scholar
  49. Glahn JF, Mason JR, Woods DR (1989) Dimethyl anthranilate as a bird repellant in livestock feed. Wildl Soc Bull 17:313–320Google Scholar
  50. Gorski L (2012) Selective enrichment media bias the types of Salmonella enterica strains isolated from mixed strain cultures and complex enrichment broths. PLoS One 7, e34722PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gorski L, Parker CT, Liang A et al (2011) Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Appl Environ Microbiol 77:2734–2748PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gorski L, Jay-Russell MT, Liang AS et al (2013) Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast. Foodborne Pathog Dis 10:540–548PubMedCrossRefGoogle Scholar
  53. Gruszynski K, Pao S, Kim C et al (2013) Evaluating wildlife as a potential source of Salmonella serotype Newport (JJPX01.0061) contamination for tomatoes on the Eastern shore of Virginia. Zoonoses Public Health 61:202–207PubMedCrossRefGoogle Scholar
  54. Gruszynski K, Pao S, Kim C et al (2014) Evaluating gulls as potential vehicles of Salmonella enterica serotype Newport (JJPX01.0061) contamination of tomatoes grown on the Eastern shore of Virginia. Appl Environ Microbiol 80:235–238PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gu G, Luo Z, Cevallos-Cevallos JM et al (2013a) Factors affecting the occurrence of Escherichia coli O157 contamination in irrigation ponds on produce farms in the Suwanee River Watershed. Can J Microbiol 59:175–182PubMedCrossRefGoogle Scholar
  56. Gu G, Luo Z, Cevallos-Cevallos JM et al (2013b) Occurrence and population density of Campylobacter jejuni in irrigation ponds on produce farms in the Suwanee River Watershed. Can J Microbiol 59:339–346PubMedCrossRefGoogle Scholar
  57. Haemig PD, Hernandez J, Waldenström J et al (2008) Barn swallows (Hirundo rustica) test negative for Salmonella. Vector Borne Zoonotic Dis 8:451–453PubMedCrossRefGoogle Scholar
  58. Hampton J, Spencer PBS, Elliot AD et al (2006) Prevalence of zoonotic pathogens from feral pigs in major public drinking water catchments in Western Australia. Ecohealth 3:103–108CrossRefGoogle Scholar
  59. Hayman DTS, Bowen RA, Cryan PM et al (2013) Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 60:2–21PubMedPubMedCentralCrossRefGoogle Scholar
  60. Henzler DJ, Optiz HM (1992) The role of mice in the epizootiology of Salmonella Enteritidis infection on chicken layer farms. Avian Dis 36:625–631PubMedCrossRefGoogle Scholar
  61. Himsworth CG, Patrick DM, Mak S et al (2014) Carriage of Clostridium difficile by wild urban Norway rats (Rattus norvegicus) and black rats (Rattus rattus). Appl Environ Microbiol 80:1299–1305PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hoye BJ, Munster VJ, Nishiura H et al (2010) Surveillance of wild birds for avian influenza virus. Emerg Infect Dis 16:1827–1834PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jay MT, Cooley M, Carychao D et al (2007) Escherichia coli O157:H7 in feral swine near spinach fields and cattle, Central California coast. Emerg Infect Dis 13:1908–1911PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jay-Russell MT (2013) What is the risk from wild animals in food-borne pathogen contamination of plants? CAB Rev 8:No. 040CrossRefGoogle Scholar
  65. Jay-Russell MT, Bates A, Harden L et al (2012) Isolation of Campylobacter from feral swine (Sus scrofa) on the ranch associated with the 2006 Escherichia coli O157:H7 spinach outbreak investigation in California. Zoonoses Public Health 59:314–319PubMedCrossRefGoogle Scholar
  66. Jay-Russell MT, Madigan JE, Bengson Y et al (2013) Salmonella Oranienburg isolated from horses, wild turkeys and an edible home garden fertilized with raw horse manure. Zoonoses Public Health 61:64–71PubMedCrossRefGoogle Scholar
  67. Jay-Russell M, Hake AF, Bengson Y et al (2014) Prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS One 9, e113433Google Scholar
  68. Jenke C, Leopold SR, Weniger T et al (2012) Identification of intermediate in evolutionary model of enterohemorrhagic Escherichia coli O157. Emerg Infect Dis 18:582–588PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jokinen C, Edge TA, Ho S et al (2011) Molecular subtypes of Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada. Water Res 45:1247–1257PubMedCrossRefGoogle Scholar
  70. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993PubMedCrossRefGoogle Scholar
  71. Jones BA, Grace D, Kock R et al (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci 110:8399–8404PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jones LA, Worobo RW, Smart CD (2014) Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. frequently found in surface water used for irrigation of fruit and vegetable crops in New York State. Appl Environ Microbiol 80:4814–4820PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kabrane-Lazizi Y, Fine JB, Elm J et al (1999) Evidence for widespread infection of wild rats with hepatitis E virus in the United States. Am J Trop Med Hyg 61:331–335PubMedGoogle Scholar
  74. Kangas S, Takkinen J, Hakkinen M et al (2008) Yersinia pseudotuberculosis O:1 traced to raw carrots, Finland. Emerg Infect Dis 14:1959–1961PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kauffman MD, LeJeune J (2011) European starlings (Sturnus vulgaris) challenged with Escherichia coli O157 can carry and transmit the human pathogen to cattle. Lett Appl Microbiol 53:596–601PubMedCrossRefGoogle Scholar
  76. Keene WE, Sazie E, Kok J et al (1997) An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. J Am Med Assoc 277:1229–1231CrossRefGoogle Scholar
  77. Keller JI, Shriver WG (2014) Prevalence of three Campylobacter species, C. jejuni, C. coli, and C. lari, using multilocus sequence typing in wild birds of the Mid-Atlantic region, USA. J Wildl Dis 50:31–41PubMedCrossRefGoogle Scholar
  78. Khan SU, Gurley ES, Jahangir Hossain M et al (2012) A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent Nipah virus transmission in Bangladesh. PLoS One 7, e42689PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kijlstra A, Meerburg B, Cornelissen J et al (2008) The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs. Vet Parasitol 156:183–190PubMedCrossRefGoogle Scholar
  80. Kilonzo C, Li X, Vivas EJ et al (2013) Fecal shedding of zoonotic food-borne pathogens by wild rodents in a major agricultural region of the Central California coast. Appl Environ Microbiol 79:6337–6344PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kullas H, Coles M, Rhyan J et al (2002) Prevalence of Escherichia coli serogroups and human virulence factors in faeces of urban Canada geese (Branta canadensis). Int J Environ Health Res 12:153–162PubMedCrossRefGoogle Scholar
  82. Laidler MR, Tourdjman M, Buser GL et al (2013) Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin Infect Dis 57:1129–1134PubMedCrossRefGoogle Scholar
  83. Langholz JA, Jay-Russell MT (2013) Potential role of wildlife in pathogenic contamination of fresh produce. Hum Wildl Interact 7:140–157Google Scholar
  84. Lecis R, Paglietti B, Rubino S et al (2011) Detection and characterization of Mycoplasma spp. and Salmonella spp. in free-living European tortoises (Testudo hermanni, Testudo graeca, and Testudo marginata). J Wildl Dis 47:717–724PubMedCrossRefGoogle Scholar
  85. Li T-C, Chijiwa K, Sera N et al (2005) Hepatitis E virus transmission from wild boar meat. Emerg Infect Dis 11:1958–1960PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liebana E, Garcia-Migura L, Clouting C et al (2003) Molecular fingerprinting evidence of the contribution of wildlife vectors in the maintenance of Salmonella Enteritidis infection in layer farms. J Appl Microbiol 94:1024–1029PubMedCrossRefGoogle Scholar
  87. Lillehaug A, Monceyron Jonassen C, Bergsjø B et al (2005) Screening of feral pigeon (Colomba livia), mallard (Anas platyrhynchos) and graylag goose (Anser anser) populations for Campylobacter spp., Salmonella spp., avian influenza virus and avian paramyxovirus. Acta Vet Scand 46:193–202PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lu J, Ryu H, Santo Domingo JW et al (2011) Molecular detection of Campylobacter spp. in California gull (Larus californicus) excreta. Appl Environ Microbiol 77:5034–5039PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lugton IW, Johnstone AC, Morris RS (1995) Mycobacterium bovis infection in New Zealand hedgehogs (Erinaceus europaeus). New Zeal Vet J 43:342–345CrossRefGoogle Scholar
  90. Magnino S, Colin P, Dei-Cas E et al (2009) Biological risks associated with consumption of reptile products. Int J Food Microbiol 134:163–175PubMedCrossRefGoogle Scholar
  91. Marin C, Ingresa-Capaccioni S, González-Bodi S et al (2013) Free-living turtles are a reservoir for Salmonella but not for Campylobacter. PLoS One 8, e72350PubMedPubMedCentralCrossRefGoogle Scholar
  92. Marin C, Palomeque M-D, Marco-Jiménez F et al (2014) Wild griffon vultures (Gyps fulvus) as a source of Salmonella and Campylobacter in eastern Spain. PLoS One 9, e94191PubMedPubMedCentralCrossRefGoogle Scholar
  93. Martel A, Adriaensen C, Sharifian-Fard M et al (2013) The absence of zoonotic agents in invasive bullfrogs (Lithobates catesbeianus) in Belgium and The Netherlands. Ecohealth 10:344–347PubMedCrossRefGoogle Scholar
  94. Marva E, Markovics A, Gdalevich M et al (2005) Trichinellosis outbreak. Emerg Infect Dis 11:1979–1981PubMedPubMedCentralCrossRefGoogle Scholar
  95. Matsuda H, Okada K, Takahashi K et al (2003) Severe hepatitis E virus infection after ingestion of uncooked liver from a wild boar. J Infect Dis 188:944PubMedCrossRefGoogle Scholar
  96. Medrano C, Boadella M, Barrios H et al (2012) Zoonotic pathogens among white-tailed deer, Northern Mexico, 2004–2009. Emerg Infect Dis 18:1372–1374PubMedPubMedCentralCrossRefGoogle Scholar
  97. Meerburg BG, Kijlstra A (2007) Role of rodents in transmission of Salmonella and Campylobacter. J Sci Food Agric 87:2774–2781CrossRefGoogle Scholar
  98. Meng X-J (2011) From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res 161:23–30PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mentaberre G, Porrero MC, Navarro-Gonzalez N et al (2013) Cattle drive Salmonella infection in the wildlife-livestock interface. Zoonoses Public Health 60:510–518PubMedCrossRefGoogle Scholar
  100. Moore JE, Gilpin D, Crothers E et al (2002) Occurrence of Campylobacter spp. and Cryptosporidium spp. in seagulls (Larus spp.). Vector Borne Zoonotic Dis 2:111–114PubMedCrossRefGoogle Scholar
  101. Mora A, López C, Dhabi G et al (2012) Seropathotypes, phylogroups, Stx subtypes, and intimin types of wildlife-carried, Shiga toxin-producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol 78:2578–2585PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moriarty EM, Karki N, Mackenzi M et al (2011) Faecal indicators and pathogens in selected New Zealand waterfowl. New Zeal J Mar Freshwat Res 45:679–688CrossRefGoogle Scholar
  103. Nielsen EM, Skov MN, Madsen JJ et al (2004) Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl Environ Microbiol 70:6944–6947PubMedPubMedCentralCrossRefGoogle Scholar
  104. Oates SC, Miller MA, Hardin D et al (2012) Prevalence, environmental loading, and molecular characterization of Cryptosporidium and Giardia isolates from domestic and wild animals along the Central California coast. Appl Environ Microbiol 78:8762–8772PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pao S, Hagens BE, Kim C et al (2014) Prevalence and molecular analyses of Campylobacter jejuni and Salmonella spp. in co-grazing small ruminants and wild-living birds. Livestock Sci 160:163–171CrossRefGoogle Scholar
  106. Parsons SK, Michael Bull C, Gordon DM (2010) Low prevalence of Salmonella enterica in Australian wildlife. Environ Microbiol Rep 2:657–659PubMedCrossRefGoogle Scholar
  107. Petersen L, Nielsen EM, Engberg J et al (2001) Comparison of genotypes and serotypes of Campylobacter jejuni isolated from Danish wild mammals and birds and from broiler flocks and humans. Appl Environ Microbiol 67:3115–3121PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rabatsky-Ehr T, Dingman D, Marcus R et al (2002) Deer meat as the source for a sporadic case of Escherichia coli O157:H7 infection, Connecticut. Emerg Infect Dis 8:525–527PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ragg JR, Moller H, Waldrup KA (1995) The prevalence of bovine tuberculosis (Mycobacterium bovis) infections in feral populations of cats (Felis catus), ferrets (Mustela furo) and stoats (Mustela erminea) in Otago and Southland, New Zealand. New Zeal Vet J 43:333–337CrossRefGoogle Scholar
  110. Rahman SA, Hassan L, Epstein JH et al (2013) Risk factors for Nipah virus infection among pteropid bats, peninsular Malaysia. Emerg Infect Dis 19:51–60PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ramos R, Cerdà-Cuéllar M, Ramírez F et al (2010) Influence of refuse sites on the prevalence of Campylobacter spp. and Salmonella serovars in seagulls. Appl Environ Microbiol 76:3052–3056PubMedPubMedCentralCrossRefGoogle Scholar
  112. Renter DG, Sargeant JM, Hygnstorm SE et al (2001) Escherichia coli O157:H7 in free-ranging deer in Nebraska. J Wildl Dis 37:755–760PubMedCrossRefGoogle Scholar
  113. Renter DG, Gnad DP, Sargeant JM et al (2006) Prevalence and serovars of Salmonella in the feces of free-ranging white-tailed deer (Odocoileus virginianus) in Nebraska. J Wildl Dis 42:699–703PubMedCrossRefGoogle Scholar
  114. Rivera WA, Husic JS, Gaylets CE et al (2012) Carriage of bacteria and protozoa in the intestinal tract of common tern chicks. Waterbirds 35:490–494CrossRefGoogle Scholar
  115. Rosef O, Gondrosen B, Kapperud G et al (1983) Isolation and characterization of Campylobacter jejuni and Campylobacter coli from domestic and wild mammals in Norway. Appl Environ Microbiol 46:855–859PubMedPubMedCentralGoogle Scholar
  116. Rounds JM, Rigdon CE, Muhl LJ et al (2012) Non-O157 Shiga toxin-producing Escherichia coli associated with venison. Emerg Infect Dis 18:279–282Google Scholar
  117. Rutjes SA, Lodder-Verschoor F, Lodder WJ et al (2010) Seroprevalence and molecular detection of hepatitis E virus in wild boar and red deer in The Netherlands. J Virol Meth 168:197–206CrossRefGoogle Scholar
  118. Ryu H, Grond K, Verheijen B et al (2014) Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay. Appl Environ Microbiol 80:1838–1847PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sanad YM, Closs G Jr, Kumar A et al (2013) Molecular epidemiology and public health relevance of Campylobacter isolated from dairy cattle and European starlings in Ohio, USA. Foodborne Pathog Dis 10:229–236PubMedCrossRefGoogle Scholar
  120. Sánchez S, García-Sanchez A, Martínez R et al (2009) Detection and characterisation of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet J 180:384–388PubMedCrossRefGoogle Scholar
  121. Sánchez S, Martínez R, García A et al (2010) Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet Microbiol 143:420–423PubMedCrossRefGoogle Scholar
  122. Sasaki Y, Goshima T, Mori T et al (2013) Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog Dis 10:985–991PubMedCrossRefGoogle Scholar
  123. Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States – major pathogens. Emerg Infect Dis 17:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  124. Schaife HR, Cowan D, Finney J et al (2006) Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Vet Rec 159:175–178CrossRefGoogle Scholar
  125. Scott T, Foster BG (1997) Salmonella spp. in free-ranging and farmed alligators (Alligator mississippiensis) from Texas and Louisiana, U.S.A. Aquaculture 156:179–181CrossRefGoogle Scholar
  126. Simpson VR (2002) Wild animals as reservoirs of infectious diseases in the UK. Vet J 163:128–146PubMedCrossRefGoogle Scholar
  127. Singer RS, Mayer AE, Hanson TE et al (2009) Do microbial interactions and cultivation media decrease the accuracy of Salmonella surveillance systems and outbreak investigations? J Food Prot 72:707–713PubMedCrossRefGoogle Scholar
  128. Skov MN, Madsen JJ, Rahbek C et al (2008) Transmission of Salmonella between wildlife and meat-production animals in Denmark. J Appl Microbiol 105:1558–1568PubMedCrossRefGoogle Scholar
  129. Swirski AL, Pearl DL, Williams ML et al (2014) Spatial epidemiology of Escherichia coli O157:H7 in dairy cattle in relation to night roosts of Sturnus vulgaris (European starling) in Ohio, USA (2007–2009). Zoonoses Public Health 61:427–435PubMedCrossRefGoogle Scholar
  130. Sylvester WRB, Amadi V, Pinckney R et al (2014) Prevalence, serovars and antimicrobial susceptibility of Salmonella spp. from wild and domestic green iguanas (Iguana iguana) in Grenada, West Indies. Zoonoses Public Health 61:436–441PubMedCrossRefGoogle Scholar
  131. Tavernier P, Dewulf J, Roelandt S et al (2011) Wildtool, a flexible, first-line risk assessment system for wildlife-borne pathogens. Eur J Wildl Res 57:1065–1075CrossRefGoogle Scholar
  132. Tei S, Kitajima N, Takahashi K et al (2003) Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 362:371–373PubMedCrossRefGoogle Scholar
  133. Thakur S, Sandfoss M, Kennedy-Stoskopf S et al (2011) Detection of Clostridium difficile and Salmonella in feral swine population in North Carolina. J Wildl Dis 47:774–776PubMedCrossRefGoogle Scholar
  134. Tomiyama D, Inoue E, Osawa Y et al (2009) Serological evidence of infection with hepatitis E virus among wild Yezo-deer, Cervus nippon yesoensis, in Hokkaido, Japan. J Viral Hepat 16:524–528Google Scholar
  135. VanderWaal KL, Atwill ER, Isbell LA et al (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol Conserv 169:136–146CrossRefGoogle Scholar
  136. Vázquez B, Esperón F, Neves E et al (2010) Screening for several potential pathogens in feral pigeons (Columba livia) in Madrid. Acta Vet Scand 52:Article 45CrossRefGoogle Scholar
  137. Wacharapluesadee S, Boongird K, Wanghongsa S et al (2010) A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis 10:183–190PubMedCrossRefGoogle Scholar
  138. Wacheck S, Fredriksson-Ahomaa M, König M et al (2010) Wild boars as an important reservoir for foodborne pathogens. Foodborne Pathog Dis 7:307–312PubMedCrossRefGoogle Scholar
  139. Weis AM, Miller WA, Byrne BA et al (2014) Prevalence and pathogenic potential of Campylobacter isolates from free-living, human-commensal American crows. Appl Environ Microbiol 80:1639–1644PubMedPubMedCentralCrossRefGoogle Scholar
  140. Williams ML, Pearl DL, LeJeune JT (2011) Multiple-locus variable nucleotide tandem repeat subtype analysis implicates European starlings as biological vectors for Escherichia coli O157:H7 in Ohio, USA. J Appl Microbiol 111:982–988PubMedCrossRefGoogle Scholar
  141. Zhou L, Kassa H, Tischler ML et al (2004) Host-adapted Cryptosporidium spp. in Canada geese (Branta canadensis). Appl Environ Microbiol 70:4211–4215PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ziegler PE, Wade SE, Schaaf SL et al (2007) Cryptosporidium spp. from small mammals in the New York City watershed. J Wildl Dis 43:586–596PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Food Safety, Department of Food Science and TechnologyUniversity of GeorgiaGriffinUSA

Personalised recommendations