Skip to main content

Estimation of Biomass and Net Primary Production (NPP) in West Siberian Boreal Ecosystems: In Situ and Remote Sensing Methods

  • Chapter
  • First Online:
Novel Methods for Monitoring and Managing Land and Water Resources in Siberia

Part of the book series: Springer Water ((SPWA))

  • 1325 Accesses

Abstract

The goal of this study is to identify the current state of in situ observations and remote sensing data and methods used to assess biomass and net primary production (NPP) in West Siberian natural ecosystems, and consider perspectives for future developments. The natural ecosystems of the boreal region mainly consist of two classes: wetlands and forests, where one is very different from the other, requiring different methods for biomass assessment. Basically, two methods are available to estimate NPP and biomass in regional terrestrial ecosystems: (1) extrapolating the local field measurements up to a larger region, using the vegetation or land cover maps and (2) modeling productivity and plant biomass at regional and grid point scales, with or without the use of remote sensing data and techniques. The first method was predominantly used to estimate wetland biomass, having an extensive dataset of direct in situ measurements in both the above- and below-ground fractions of biomass. So far, no direct methods based on remote sensing data have been elaborated for biomass estimations in wetland ecosystems and soil carbon inventories. In forest ecosystems, the biomass can be estimated by processing satellite data from high-resolution radiometers (AVHRRs). The radar or LIDAR remote sensing approaches hold great promise for direct observations of the three-dimensional structure (3D) of the above-ground vegetation that can be used for relatively straight-forward calculations of carbon storage, but the method works only in low to medium biomass ecosystems. The SAR-based biomass retrievals were found to be fairly uncertain in mature forests with high biomass values, as the Synthetic Aperture Radar (SAR) signal often saturates at ~70 tonnes/ha. The estimation errors in terms of RMSE are typically found at 25–30 % of the mean biomass. The methods should be further refined to reduce uncertainties and to make them operational over the vast region of Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, De Caluwe H, Kanings H (1992) Seasonal allocation of biomass and nitrogen in four Carex species from mesotrophic and eutrophic fen as affected by nitrogen supply. J Ecol 80:653–664

    Article  Google Scholar 

  • Andrus R, Wagner DJ, Titus JE (1983) Vertical distribution of Sphagnum mosses along hummock-hollow gradients. Can J Bot 61:3128–3139

    Article  Google Scholar 

  • Aselmann I, Crutzen P (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atm Chem 8(4):307–358

    Article  CAS  Google Scholar 

  • Askne J, Santoro M, Smith G, Fransson JES (2003) Multitemporal repeat-pass SAR interferometry of boreal forests. IEEE Trans Geosci Rem Sens 41:1540–1550

    Article  Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA 107:16738–16742

    Article  CAS  Google Scholar 

  • Attema EPW, Ulaby FT (1978) Vegetation modeled as a water cloud. Radio Sci 13:357–364

    Article  Google Scholar 

  • Balzter H, Talmon E, Wagner W, Gaveau D, Plummer S, Yu JJ, Yu JJ, Quegan S, Davidson M, Le Toan T, Gluck M, Shvidenko A, Nilsson S, Tansey K, Luckman A, Schmullius C (2002) Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar. Can J Rem Sens 28(6):719–737

    Article  Google Scholar 

  • Beer C, Lucht W, Schmullius C, Shvidenko A (2006) Small net uptake of carbon dioxide by Russian forests during 1981–1999. Geophys Res Lett 33:L15403. doi:10.1029/2006GL026919

    Article  Google Scholar 

  • Botch MS, Kobak K, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the Former Soviet Union. Global Biogeochem Cycles 9:37–46

    Article  CAS  Google Scholar 

  • Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE (2000) Net primary production and standing biomass in northern continental wetlands. Nat For Serv North For Cent, Edmonton, Alberta, Inf Rep NOR-X-369

    Google Scholar 

  • Cartus O, Santoro M, Kellndorfer J (2012) Mapping forest aboveground biomass in the Northeastern United States with ALOS Palsar dual-polarization L-band. Rem Sens Env 124:466–478. doi:10.1016/j.rse.2012.05.029

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin V, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 465–570

    Google Scholar 

  • Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A, Rayner PJ, Miller C, Gobron N, Kinderman G, Marland G, Gruber N, Chevallier F, Andres RJ, Balsamo G, Bopp L, Bréon F-M, Broquet G, Dargaville R, Battin TJ, Borges A, Bovensmann H, Buchwitz M, Butler J, Canadell JG, Cook RB, DeFries R, Engelen R, Gurney KR, Heinze C, Heimann M, Held A, Henry M, Law B, Luyssaert S, Miller J, Moriyama T, Moulin C, Myneni RB, Nussli C, Obersteiner M, Ojima D, Pan Y, Paris J-D, Piao SL, Poulter B, Plummer S, Quegan S, Raymond P, Reichstein M, Rivier L, Sabine C, Schimel D, Tarasova O, Valentini R, Wang R, van der Werf G, Wickland D, Williams M, Zehner C (2014) Current systematic carbon cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosci 11:3547–3602. doi:10.5194/bg-11-3547-2014

    Article  CAS  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Phylos Trans R Soc Lond Biol Sci 303:605–658

    Article  Google Scholar 

  • Coleman DC (1976) A review of root production processes and their influence on soil biota in terrestrial ecosystems. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford, pp 417–434

    Google Scholar 

  • Dolman AJ, Shvidenko A, Schepaschenko D, Ciais P, Tchebakova N, Chen T, van der Molen MK, Belelli Marchesini L, Maximov TC, Maksyutov S, Schulze ED (2012) An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosc 9:5323–5340. doi:10.5194/bg-9-5323-2012

    Article  CAS  Google Scholar 

  • Efremov SP, Efremova TT (2001) Present stocks of peat and organic carbon in bog ecosystems of west Siberia. In: Bleuten W, Lapshina ED (eds) Carbon storage and atmospheric exchange by West Siberian Peatlands. Utrecht University, Utrecht, pp 73–78

    Google Scholar 

  • Eriksson LEB, Santoro M, Wiesmann A, Schmullius C (2003) Multi-temporal JERS repeat-pass coherence for growing stock volume estimation of Siberian forest. IEEE Trans Geosci Rem Sens 41(7):1561–1570. doi:10.1109/TGRS.2003.814131

    Article  Google Scholar 

  • Fransson JES, Israelsson H (1999) Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. Int J Rem Sens 20(1):123–137

    Article  Google Scholar 

  • Gaveau DLA, Balzter H, Plummer S (2003) Forest woody biomass classification with satellite-based radar coherence over 900,000 km2 in Central Siberia. For Ecol Manage 174:65–75

    Article  Google Scholar 

  • Golovatskaya EA (2009) Biological productivity of oligotrophic and eutrophic mires in the Southern Taiga of Western Siberia. J Siberian Fed Univ. Biology 2(1):38–53 (in Russian) (Гoлoвaцкaя EA (2009) Биoлoгичecкaя пpoдyктивнocть oлигoтpoфныx и эвтpoфныx бoлoт южнoтaeжнoй пoдзoны Зaпaднoй Cибиpи. Жypнaл Cиб Фeд Унив, Cep Биoлoгия, 2(1):38–53)

    Google Scholar 

  • Golovatskaya EA, Dyukarev EA (2009) Carbon budget of oligotrophic mire sites in the Southern Taiga of Western Siberia. Plant Soil 315(1–2):19–34

    Article  CAS  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps. Biogeosc Discuss 11:4771–4822. doi:10.5194/bgd-11-4771-2014

    Article  Google Scholar 

  • Imhoff M (1995) Radar backscatter and biomass saturation: ramifications for global biomass inventory. IEEE Trans Geosci Rem Sens 33(2):511–518

    Article  Google Scholar 

  • Kivinen E, Pakarinen P (1981) Geographical distribution of peat resources and major peatland complex types in the world. Ann Acad Scient Fenn Ser A 132:28

    Google Scholar 

  • Kopoteva TA, Kosykh NP (2011) Comparative evaluation of the structure of phytomass and productivity of mesotrophic and dwarf shrub-Sphagnum Mires of the Taiga Zone. Contemp Prob Ecol 2:301–307

    Google Scholar 

  • Kosykh NP, Mironycheva-Tokareva NP, Peregon AM, Parshina EK (2008a) Biological productivity of bogs in the middle Taiga subzone of Western Siberia. Russ J Ecol 39(7):8–16

    Article  Google Scholar 

  • Kosykh NP, Koronatova NG, Naumova NB, Titlyanova AA (2008b) Above- and below-ground phytomass and net primary production in boreal mire ecosystems. Wetlands Ecol Manage 16:139–153. doi:10.1007/s11273-007-9061-7

    Article  Google Scholar 

  • Kosykh NP, Mironycheva-Tokareva NP, Parshina EK (2008c) Biological productivity of mires in forest-tundra environments of Western Siberia, Vestnik TGPU, Seriya. Biologicheskie nauki 4(78):53–57 (in Russian) (Кocыx HП, Mиpoнычeвa-Toкapeвa HП, Пapшинa EК (2008c) Биoлoгичecкaя пpoдyктивнocть бoлoт лecoтyндpы Зaпaднoй Cибиpи. Becтник TГПУ, Cep: Биoл нayки, Bып. 4(78): 53–57)

    Google Scholar 

  • Kosykh NP, Mironycheva-Tokareva NP, Parshina EK (2009) The carbon and macroelements budget in the bog ecosystems of the middle taiga in Western Siberia. Int J Environ Stud 66:485–493

    Article  CAS  Google Scholar 

  • Kudryashova SY, Baikov KS, Titlyanova AA, Dits LYu, Kosykh NP, Makhatkov ID, Shibareva SV (2011) Distributed GIS for estimation of soil carbon stock of West Siberia boreal zone. Contemp Prob Ecol 4(5):475–486

    Article  Google Scholar 

  • Kurvonen L, Pulliainen J, Hallikainen M (1999) Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Trans Geosci Rem Sens 37:198–205

    Article  Google Scholar 

  • Lapshina ED, Vasiliev SV (2001) Carbon storage and atmospheric exchange by West Siberian peatlands. In: Bleuten W, Lapshina ED (eds) Appendix 1: Land unit maps. FGUU Scientific Reports 2001-1, Utrecht (NL), 165 p. ISBN 90-806594-1.X

    Google Scholar 

  • Le Toan T, Beaudoin A, Riom J, Guyon D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Rem Sens 30(2):403–411

    Article  Google Scholar 

  • Le Toan T, Quegan S, Woodward I, Lomas M, Delbart N, Picard C (2004) Relating radar remote sensing of biomass to modeling of forest carbon budget. Clim Change 76:379–402

    Article  Google Scholar 

  • Le Toan T, Quegan S, Davidson M, Balzter H, Paillou P, Papathanassiou K, Plummer S, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Rem Sens Env 115:2850–2860. doi:10.1016/j.rse.2011.03.020

    Article  Google Scholar 

  • Lefsky MA (2010) A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett 37:L15401. doi:10.1029/2010GL043622

    Article  Google Scholar 

  • Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Del Bom Espirito-Santo F, Hunter MO, de Oliveira R Jr (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02. doi:10.1029/2005GL023971

    Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22. http://www.wwfus.org/science/data.cfm. Accessed on 15 Nov 2014

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New Jersey, New York, p 763

    Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Rem Sens 21(6/7):1303–1330 (The global land cover characterisation (GLCC) dataset, Eurasia land cover characteristics, data base version 2.0 (available online at http://edc2.usgs.gov/glcc/eadoc2_0.php#down. Accessed on 15 Nov 2014)

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1(1):61–86

    Article  CAS  Google Scholar 

  • Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis C, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zürcher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan J (2013) Present state of global wetlands extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788. doi:10.5194/bg-10-753-2013

    Article  Google Scholar 

  • Mitchard ETA, Saatchi SS, Woodhouse IH, Nangendo G, Ribeiro NS, Williams M, Ryan CM, Lewis SL, Feldpausch TR, Meir P (2009) Using satellite radar backscatter to predict above-ground woody biomass: a consistent relationship across four different African landscapes. Geophys Res Lett 36:L23401. doi:10.1029/2009GL040692

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an oligotrophic bog. J Ecol 90:25–36

    Article  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci USA 98:14784–14789. doi:10.1073/pnas.261555198

    Google Scholar 

  • Naumov AV, Kosykh NP (2010) The structure and functional features of sphagnum cover of the northern west siberian mires in connection with forecasting global environmental and climatic changes–VI Sphagnum and Peatlands, pp 299– 317, In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, 491 p

    Google Scholar 

  • Neumann M, Saatchi SS, Ulander LMH, Fransson JES (2012) Assessing performance of L- and P-Band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass. IEEE Trans Geosci Rem Sens 50:714–726

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forest. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Peregon A, Yamagata Y (2013) The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: a case study in Western Siberia. Rem Sens Env 137:139–146. doi:10.1016/j.rse.2013.06.012

    Article  Google Scholar 

  • Peregon A, Maksyutov S, Kosykh NP, Mironycheva-Tokareva NP (2008) Map-based inventory of wetland biomass and net primary production in western Siberia. J Geophys Res Biogeosci 113:G01007. doi:10.1029/2007JG000441

    Article  Google Scholar 

  • Peregon A, Maksyutov S, Yamagata Y (2009) An image-based inventory of the spatial structure of West Siberian wetlands. Environ Res Lett 4:045014. doi:10.1088/1748-9326/4/4/045014

    Article  Google Scholar 

  • Petrescu, AMR, van Beek LPH, van Huissteden J, Prigent C, Sachs T, Corradi CAR, Parmentier FJW, Dolman AJ (2010) Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochem Cycles 24:GB400. doi:10.1029/2009GB003610

    Google Scholar 

  • Potter CS, Randerson JT, Field CB (1993) Terrestrial ecosystem production: a process model based on global satellite data end surface data. Global Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Prentice C, Cramer W, Harrison S, Leemans K, Monserub R, Solomon R (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Pulliainen J, Kurvonen L, Hallikainen M (1999) Multitemporal behavior of L- and C-band SAR observations of boreal forests. IEEE Trans Geosci Rem Sens 37(2):927–937

    Article  Google Scholar 

  • Ranson KJ, Sun G, Lang RH, Chauhan NS, Cacciola RJ, Kilic O (1997) Mapping of boreal forest biomass from spaceborne synthetic aperture radar. J Geophys Res 102(D24):29599–29610

    Google Scholar 

  • Rauste Y (2005) Multi-temporal JERS SAR data in boreal forest biomass mapping. Rem Sens Env 97(2):263–275

    Article  Google Scholar 

  • Rauste Y, Häme T, Pulliainen J, Heiska K, Hallikainen M (1994) Radar-based forest biomass estimation. Int J Rem Sens 15:2797–2808

    Article  Google Scholar 

  • Rauste Y, Lonnqvist A, Ahola H (2008) Mapping boreal forest biomass with imagery from polarimetric and semi-polarimetric SAR sensors. Ambiencia, Guarapuava, PR, 4, Edicao Especial 171–180

    Google Scholar 

  • Romanova EA, Bybina RT, Golitsyna EF, Ivanova GM, Usova LI, Trushnikova LG (1977) Tipologicheskaya karta bolot Zapadno-Sibirskoi ravniny (Wetland typology map of west Siberian lowland). GUGK, Leningrad, Scale 1:2500000

    Google Scholar 

  • Rosenqvist A, Shimada M, Ito N, Watanabe M (2007) ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Rem Sens 45:3307–3316

    Article  Google Scholar 

  • Ruimy A, Sauguer B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99:5263–5283

    Article  Google Scholar 

  • Saatchi SS, Houghton RA, Alvala R, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Change Biol 13:816–837

    Article  Google Scholar 

  • Saatchi S, Ulander L, Williams M, Quegan S, LeToan T, Shugart H, Chave J (2012) Forest biomass and the science of inventory from space. Nat Climate Change 2:826–827

    Article  Google Scholar 

  • Sagreev VV (1975) Basic principles of forest inventory. In: Sagreev VV, Vagin AB (eds) High school. Moscow, 264 pp (in Russian)

    Google Scholar 

  • Sagreev VV, Sukhikh VI, Shvidenko AZ, Gusev NN, Moshkalev AG (1992) All-union standards for forest inventory, Urozhai. Moscow, 495 pp (in Russian). (Зaгpeeв BB, Cyxиx BИ, Швидeнкo AЗ, Гyceв HH, Moшкaлeв AГ (1992) Oбщecoюзныe нopмaтивы для тaкcaции лecoв. Cпpaвoчник, Mocквa, Кoлoc, 495c)

    Google Scholar 

  • Sandberg G, Ulander LMH, Fransson JES, Holmgres J, Le Toan T (2011) L- and P-band backscatter intensity for biomass retrival in hemiboreal forest. Rem Sens Env 115:2874–2886

    Article  Google Scholar 

  • Santoro M, Askne J, Smith G, Fransson JES (2002) Stem volume retrieval in boreal forests with ERS-1/2 interferometry. Rem Sens Env 81(1):19–35

    Article  Google Scholar 

  • Santoro M, Eriksson L, Askne J, Schmullius C (2006) Assessment of standwise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int J Rem Sens 27(16):3425–3454. doi:10.1080/01431160600646037

    Article  Google Scholar 

  • Santoro M, Shvidenko A, McCallum I, Askne J, Schmullius C (2007) Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval. Rem Sens Env 106:154–172

    Article  Google Scholar 

  • Santoro M, Fransson JES, Eriksson LEB, Magnusson M, Ulander LMH, Olsson H (2009) Signatures of ALOS PALSAR L-band backscatter in Swedish forest. IEEE Trans Geosci Rem Sens 47(12):4001–4019

    Article  Google Scholar 

  • Santoro M, Beer C, Cartus O, Schmullius C, Shvidenko A, McCallum I, Wegmüller U, Wiesmann A (2011) Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Rem Sens Env 115(2):490–507

    Article  Google Scholar 

  • Santoro M, Cartus O, Fransson JES, Shvidenko A, McCallum I, Hall RJ, Beaudoin A, Beer C, Schmullius C (2013) Estimates of forest growing stock volume for Sweden, Central Siberia and Québec using Envisat advanced synthetic aperture radar backscatter data. Rem Sens 5:4503–4532. doi:10.3390/rs5094503

    Article  Google Scholar 

  • Schmullius C, Baker J, Balzter H, Davidson M, Eriksson L, Gaveau D, Gluck M, Holz A, Luckman AJ, Marschalk U, McCallum I, Nilsson S, Oeskog A, Quegan S, Rauste Y, Roth A, Shvidenko A, Le Toan T, Tansey KJ, Vietmeier J, Wagner W, Wegmüller U, Wiesmann A, Yu JJ (2001) SAR imaging for boreal ecology and radar interferometry applications (SIBERIA). Centre of Earth Observation, 4th Framework Programme of the European Community. Final report Co. No. ENV4-CT97-0743-SIBERIA (Luxembourg: EC)

    Google Scholar 

  • Sheng Y, Smith L, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochem Cycles 18:GB3004. doi:10.1029/2003GB002190

    Google Scholar 

  • Shvidenko A, Nilsson S (2002) Dynamics of Russian forests and the carbon budget in 1961–1998: an assessment based on long-term forest inventory data. Clim Change 50:5–37

    Article  Google Scholar 

  • Shvidenko AZ, Schepaschenko DG, Nilsson S (2001) Aggregated models of phytomass of major forest forming species of Russia. Forest Inv Forest Plann 1(30):50–57 (in Russian) (Швидeнкo AЗ, Щeпaщeнкo ДГ, Hильccoн C (2001) Aгpeгиpoвaнныe мoдeли фитoмaccы ocнoвныx лecooбpaзyющиx пopoд Poccии. Лecнaя тaкcaция и лecoycтpoйcтвo 1:50–57)

    Google Scholar 

  • Shvidenko A, Schepaschenko D, Nilsson S, Boului Y (2007a) Tables and models of growth and productivity of forests of major forming species of Northern Eurasia (standard and reference materials). Federal Agency of Forest Management of the Russian Federation and International Institute for Applied Systems Analysis, Moscow, 803 pp

    Google Scholar 

  • Shvidenko A, Schepaschenko D, Nilsson S, Bouloui Y (2007b) Semi-empirical models for assessment biological productivity of Northern Eurasian forests. Ecol Modelling 204:163–179

    Article  Google Scholar 

  • Shvidenko A, Schepaschenko D, McCallum I (2010) Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Clim Change 103:137–157. doi:10.1007/s10584-010-9918-2

    Article  CAS  Google Scholar 

  • Smith LC, McDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004) Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303:353–356

    Article  CAS  Google Scholar 

  • Tansey KJ, Luckman AJ, Skinner L, Balzter H, Strozzi T, Wagner W (2004) Classification of forest volume resources using ERS tandem coherence and JERS backscatter data. Int J Rem Sens 25(4):751–768

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:Gb2023. doi: 10.1029/2008GB003327

    Google Scholar 

  • Thiel C, Drezet P, Weise C, Quegan S, Schmullius C (2006) Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. Forestry 79(5):589–597. doi:10.1093/forestry/cpl036

    Article  Google Scholar 

  • Thiel CJ, Thiel C, Schmullius C (2009) Operational large-area forest monitoring in Siberia using ALOS PALSAR summer intensities and winter coherence. IEEE Trans Geosci Rem Sens 47(12):3993–4000. doi:10.1109/TGRS.2009.2021469

    Article  Google Scholar 

  • Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR, Schmullius C (2014) Carbon stock and density of northern boreal and temperate forests. Global Ecol Biogeogr 23:297–310. doi:10.1111/geb.12125

    Article  Google Scholar 

  • Titlyanova AA, Romanova IP, Kosykh NP, Mironycheva-Tokareva NP (1999) Pattern and process in above-ground and below-ground components of grassland ecosystems. J Veg Sci 10:307–320

    Article  Google Scholar 

  • Townshend J, Justice C, Li W, Gurney C, McManus J (1991) Global landcover classification remote sensing: present capabilities and future possibilities. Rem Sens Env 35:243–255

    Article  Google Scholar 

  • Tyuremnov SN (1976) Torfyanye mestorozdenya. Nedra, Moscow, 488 pp (in Russian) (Tюpeмнoв CH (1976) Topфяныe мecтopoждeния, Mocквa, Heдpa, 488 c)

    Google Scholar 

  • van Zyl J (1993) The effect of topography on radar scattering from vegetated areas. IEEE Trans Geosci Rem Sens 31(1):153–160

    Article  Google Scholar 

  • Vorobyov GI (1986) Encyclopedia of forest. In: Anuchin NA, Atrokhin VG, Vinogradov VN et al (eds) Sov Encyclopedia. Moscow, 631 pp (in Russian) (Bopoбьeв ГИ (1986) Лecнaя энциклoпeдия//Aнyчин HA, Aтpoxин BГ, Bинoгpaдoв BH и дp., Mocквa, Coв Энциклoпeдия, 631c)

    Google Scholar 

  • Wagner W, Luckman A, Vietmeier J, Tansey K, Balzter H, Schmullius C et al (2003) Large-scale mapping of boreal forest in Siberia using ERS tandem coherence and JERS backscatter data. Rem Sens Env 85:125–144

    Article  Google Scholar 

  • Wallén B (1992) Methods for studying below-ground production in mire ecosystems. Suo 43(4–5):155–162

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge 174 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Peregon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peregon, A., Kosykh, N.P., Mironycheva-Tokareva, N.P., Ciais, P., Yamagata, Y. (2016). Estimation of Biomass and Net Primary Production (NPP) in West Siberian Boreal Ecosystems: In Situ and Remote Sensing Methods. In: Mueller, L., Sheudshen, A., Eulenstein, F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_8

Download citation

Publish with us

Policies and ethics