Skip to main content

Measuring and Estimating Fluxes of Carbon, Major and Trace Elements to the Arctic Ocean

  • Chapter
  • First Online:
Novel Methods for Monitoring and Managing Land and Water Resources in Siberia

Part of the book series: Springer Water ((SPWA))

Abstract

This chapter describes the methods and case studies of element flux measurements in the Arctic and subarctic rivers, in the Russian boreal and subarctic zone, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation coverage. The majority of existing flux measurements is based on a combination of daily discharges from Russian Hydrological Survey gauging stations with grab samples or year-round sampling of dissolved and particulate load following the chemical analysis. In this chapter, a new, geochemical-based perspective on the functioning of aquatic boreal systems is described which takes into account the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the spring flood; (3) the role of permafrost presence within the small and large watersheds; and (4) the governing role of terrestrial vegetation in element mobilization from rock substrate to the rivers. This kind of multiple approach allows a first-order prediction of element fluxes in a scenario of progressive warming in high latitudes. Two novel dimensions added to the existing knowledge on element transport from the land to the Arctic Ocean by the Russian boreal and subarctic rivers are (i) evaluation of colloidal flux of dissolved substances and low molecular weight (LMW) fraction and (ii) assessing, for the first time, the isotopic signatures of Ca, Mg, Si, and Fe in several case watersheds of various lithology and permafrost coverage. The results of this study and available data from the literature demonstrate that, while climate warming will certainly affect the wintertime element fluxes and speciation, it is unlikely to change the nature and magnitude of the main fraction of trace elements TE flux to the ocean. This fraction of the flux occurs in colloidal form during several weeks of the spring flood. At the present time, it is not strongly affected by climate change, or this influence is within the uncertainty of the flux measurements. Overall, the major changes in the chemical and isotopic nature of riverine fluxes to the Arctic Ocean from Northern Eurasia in a climate warming scenario are likely to be linked to the change in the vegetation (species, biomass and geographical extension), rather than temperature and hydrology. The increase in the depth of the active layer has an influence of second-order importance on the riverine fluxes given that the majority of continental flux to the Arctic Ocean is formed on permafrost soils, highly homogeneously over the depth profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexeev S, Alexeeva L, Borisov V, Shouakar-Stash O, Frape S, Chabaux F, Kononov A (2007) Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian platform. Russ Geol Geophys 48:225–236

    Article  Google Scholar 

  • Bagard ML, Chabaux F, Pokrovsky OS, Prokushkin AS, Viers J, Dupré B, Stille P (2011) Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim Cosmochim Acta 75:3335–3357

    Article  CAS  Google Scholar 

  • Bagard ML, Schmitt AD, Chabaux F, Pokrovsky OS, Viers J, Stille P, Labolle F, Prokushkin AS (2013) Biogeochemistry of stable Ca and radiogenic Sr isotopes in larch-covered permafrost-dominated watersheds of Central Siberia. Geochim Cosmochim Acta 114:169–187

    Article  Google Scholar 

  • Bazilevitch NI (1976) Biogenic and abiogenic processes in forest, step, and desert ecosystems. Int Geogr 76:58–62 (Section 4: Biogeography and Geography of Soils)

    Google Scholar 

  • Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003) Iron isotope constraints on Fe cycling and mass balance in oxygenated earth oceans. Geology 31:629–632

    Article  CAS  Google Scholar 

  • Beilman DW, MacDonald GM, Smith LC, Reimer PJ (2009) Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochem Cycles 23, GB1012, doi:10.1029/2007GB003112

    Google Scholar 

  • Bergquist BA, Boyle EA (2006) Iron isotopes in the Amazon River system: weathering and transport signatures. Earth Planet Sci Lett 248(1–2):54–68

    Article  CAS  Google Scholar 

  • Botch MS, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9:37–46. doi:10.1029/94GB03156

    Article  CAS  Google Scholar 

  • Brown J, Ferrians Jr OJ, Heginbottom JA, Melnikov ES (2002) Circum-arctic map of permafrost and ground ice conditions. National snow and ice data center/World data center for glaciology, Boulder, Digital media. http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/. Accessed 22 Feb 2015

  • Cooper LW, Benner R, McClelland JW, Peterson BJ, Holmes RM, Raymond R, Hansell D, Grebmeier J, Codispotti L (2005) Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. J Geophys Res 110:G02013. doi:10.1029/20058JG000031

    Article  Google Scholar 

  • Cooper LW, McClelland JW, Holmes RM, Raymond PA, Gibson JJ, Guay CK, Peterson BJ (2008) Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophys Res Lett 35:L18606. doi:10.1029/2008GL035007

    Article  Google Scholar 

  • de Jong J, Schoemann V, Tison J-L, Becquevort S, Masson F, Lannuzel D, Petit J, Chou L, Weis D, Mattielli N (2007) Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MCICP-MS). Anal Chim Acta 589:105–119

    Google Scholar 

  • Dittmar Th, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120

    Article  CAS  Google Scholar 

  • Engström E, Rodushkin I, Ingri J, Baxter DC, Ecke F, Osterlund H, Ohlander B (2010) Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chem Geol 271:142–152

    Article  Google Scholar 

  • Escoube R, Rouxel OJ, Sholkovitz E, Donard OFX (2009) Iron isotope systematics in estuaries: the case of North River, Massachusetts (USA). Geochim Cosmochim Acta 73(14):4045–4059

    Article  CAS  Google Scholar 

  • Fantle MS, DePaolo DJ (2004) Iron isotopic fractionation during continental weathering. Earth Planet Sci Lett 228:547–562

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Meunier J-D (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    Article  CAS  Google Scholar 

  • Frey KE, McClelland JW, Holmes RM, Smith LC (2007a) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res 112: G04S58. doi:10.1029/2006JG000369

    Google Scholar 

  • Frey KE, Siegel DI, Smith LC (2007b) Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour Res 43:W03406. doi:10.1029/2006WR004902

    Article  Google Scholar 

  • Gaillardet J, Millot R, Dupré B (2003) Chemical denudation rates of the western Canadian orogenic belt: the Stikine terrane. Chem Geol 201:257–279

    Article  CAS  Google Scholar 

  • Gebhardt AC, Gaye-Haake B, Unger D, Lahajnar N, Ittekkot V (2004) Racent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Mar Geol. 207:225–245

    Article  CAS  Google Scholar 

  • Gelting J, Breitbarth E, Stolpe B, Hassellöv M, Ingri J (2010) Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone. Biogeosciences 7(8):2489–2508

    Article  CAS  Google Scholar 

  • Georg RB, Reynold BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249:290–306

    Article  CAS  Google Scholar 

  • Georg RB, Reynolds BC, West AJ, Burton KW, Halliday AN (2007) Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet Sci Lett 261:476–490

    Article  CAS  Google Scholar 

  • Georg RB, West AJ, Basu AR, Halliday AN (2009) Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget. Earth Planet Sci Lett 283:67–74

    Article  CAS  Google Scholar 

  • Gislason SR, Arnorsson S, Armannsson H (1996) Chemical weathering of basalt as deduced from the composition of precipitation, rivers and rocks in Southwest Iceland: effect of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296:837–907

    Article  CAS  Google Scholar 

  • Gordeev VV (2006) Fluvial sediment flux to the Arctic Ocean, Geomorphology 80:94–104

    Google Scholar 

  • Gordeev VV, Sidorov IS (1993) Concentration of major elements and their outflow into the Laptev Sea by the Lena River. Mar Chem 43:33–45

    Article  CAS  Google Scholar 

  • Gordeev VV, Martin JM, Sidorov IS, Sidorova MV (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic ocean. Am J Sci 296:664–691

    Article  CAS  Google Scholar 

  • Gordeev VV, Rachold V, Vlasova IE (2004) Geochemical behavior of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river. Siberia Appl Geochem 19:593–610

    Article  CAS  Google Scholar 

  • Guay CKH, Zhulidov AV, Robarts RD, Zhulidov DA, Gurtovaya TY, Holmes RM, Headley JV (2010) Measurements of Cd, Cu, Pb and Zn in the lower reaches of major Eurasian arctic rivers using trace metal clean techniques. Environ Pollut 158:624–630

    Article  CAS  Google Scholar 

  • Guieu C, Huang WW, Martin J-M, Yong YY (1996) Outflow of trace metals into the Laptev Sea by the Lena River. Mar Chem 53:255–267

    Article  CAS  Google Scholar 

  • Guo L, Cai Y, Belzile C, Macdonald R (2012) Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 107(1-3):187–206

    Google Scholar 

  • Holmes RM, Peterson BJ, Gordeev VV, Zhulidov AV, Meybeck M, Lammers RB, Vörösmarty CJ (2000) Flux of nutrients from Russian rivers to the Arctic Ocean: can we establish a baseline against which to judge future changes? Water Resour Res 36(8):2309–2320

    Article  CAS  Google Scholar 

  • Holmes RM, Peterson BJ, Zhulidov AV, Gordeev VV, Makkaveev PN, Stunzhas PA, Kosmenko LS, Köhler GH, Shiklomanov AI (2001) Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: results from June 2000 expedition and evaluation of long-term data sets. Mar Chem 75:219–227

    Article  CAS  Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35:369–382. doi:10.1007/s12237-011-9386-6

    Article  CAS  Google Scholar 

  • Hughes HJ, Sondag F, Cocquyt C, Laraque A, Pandi A, André L, Cardinal D (2011) Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnol Oceanogr 56(2):551–561

    Article  CAS  Google Scholar 

  • Huh Y, Edmond JM (1999) The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochim Cosmochim Acta 63:967–987

    Article  CAS  Google Scholar 

  • Huh Y, Panteleyev G, Babich D, Zaitsev A, Edmond JM (1998) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim Cosmochim Acta 62:2053–2075

    Article  CAS  Google Scholar 

  • Huser BJ, Kohler SJ, Wilander A, Johansson K, Folster J (2011) Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009). Biogeosciences 8:1813–1823

    Article  CAS  Google Scholar 

  • Hydrological Yearbooks, State Gidromet (1954–1975) Yenissey basin. vol 7, parts 2–4

    Google Scholar 

  • Ilina SM, Poitrasson F, Lapitsky SA, Alekhin YuV, Viers J, Pokrovsky OS (2013) Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters. Geochim Cosmochim Acta 101:96–111

    Article  CAS  Google Scholar 

  • Ingri J, Malinovsky D, Rodushkin I, Baxter DC, Widerlund A, Andersson P, Gustafsson Ö, Forsling W, Öhlander B (2006) Iron isotope fractionation in river colloidal matter. Earth Planet Sci Lett 245(3–4):792–798

    Article  CAS  Google Scholar 

  • ISO (1983) Liquid flow measurement in open channels. Handbook 16, International Standards Organization

    Google Scholar 

  • Lambelet M, Rehkämper M, van de Flierdt T, Xue Z, Kreissig K, Coles B, Porcelli D, Andersson P (2013) Isotopic analysis of Cd in the mixing zone of Siberian rivers with the Arctic Ocean-new constraints on marine Cd cycling and the isotope composition of riverine Cd. Earth Planet Sci Lett 361:64–73

    Article  CAS  Google Scholar 

  • Leonov AB, Chicherina OV (2004) Export of biogenic components of the riverine flux to the White Sea. Water Resour 31(2):170–192

    Article  Google Scholar 

  • Magritsky DV (2010) Annual suspended matter flow of the Russian rivers belonging to the Arctic Ocean basin and its anthropogenic transformation. Vestnik Moscow State Unive Ser Geogr 5(6):17–24

    Google Scholar 

  • Mavromatis V, Prokushkin AS, Pokrovsky OS, Viers J, Koretz M (2014) Mg isotopes in permafrost-dominated Central Siberian larch forest watersheds. Geochim Cosmochim Acta 147:76–89

    Article  CAS  Google Scholar 

  • Moiseenko TI, Skjelkvale BL, Gashkina NA, Shalabodoc AD, Khoroshavin VYu (2013) Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: effects of air pollution and climate change. Appl Geochem 28:69–79

    Article  CAS  Google Scholar 

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and Sr isotopic ratios in river water. The Congo basin case. Earth Planet Sci Lett 120:59–76

    Article  Google Scholar 

  • Nikanorov AM, Bryzgalo VA, Kosmenko LS, Reshetnyak OS (2010a) The role of chemical river runoff in the anthropogenic transformation of the state of the aquatic environment in the Enisei mouth area. Water Resour 37(4):471–480

    Article  CAS  Google Scholar 

  • Nikanorov AM, Smirnov MP, Klimenko OA (2010b) Long-term trends in total and anthropogenic discharge of organic and biogenic substances by Russian rivers into the Arctic and Pacific Seas. Water Resour 37(3):361–371

    Article  CAS  Google Scholar 

  • Poitrasson F, Viers J, Martin F, Braun JJ (2008) Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: implications for the global Fe geochemical cycle. Chem Geol 253:54–63

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Schott J, Kudryavtzev DI, Dupré B (2005a) Basalts weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69:5659–5680

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Dupré B, Schott J (2005b) Fe-Al-organic colloids control the speciation of trace elements in peat soil solutions: results of ultrafiltration and dialysis. Aquat Geochem 11:241–278

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Schott J, Dupré B (2006) Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia. Geochim Cosmochim Acta 70:3239–3260

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem Geol 273:136–149

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Zabelina SA, Vorobieva TY, Moreva OY, Klimov SI, Chupakov AV, Shorina NV, Kokryatskaya NM, Audry S, Viers J, Zouiten C, Freydier R (2012a) Size fractionation of trace elements in a seasonally stratified boreal lake: control of organic matter and iron colloids. Aquat Geochem 18:115–139

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Viers J, Dupré B, Chabaux F, Gaillardet J, Audry S, Prokushkin AS, Shirokova LS, Kirpotin SN, Lapitsky SA, Shevchenko VP (2012b) Biogeochemistry of carbon, major and trace elements in watersheds of Northern Eurasia drained to the Arctic Ocean: the change of fluxes, sources and mechanisms under the climate warming prospective. C.R Geoscience 344:663–677

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Kirpotin SN (2014) Biogeochemistry of Thermokarst Lakes of Western Siberia, Nova Science Publ. Inc., NY, 163 pp. 2014

    Google Scholar 

  • Prokushkin AS, Pokrovsky OS, Shirokova LS, Korets MA, Viers J, Prokushkin SG, Amon R, Guggenberger G, McDowell WH (2011) Sources and export fluxes of dissolved carbon in rivers draining larch-dominated basins of the Central Siberian Plateau. Environ Res Lett 6: 045212 (14 pp). doi:10.1088/1748-9326/6/4/045212

    Google Scholar 

  • Rember RD, Trefry JH (2004) Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic. Geochim Cosmochim Acta 68(3):477–489

    Article  CAS  Google Scholar 

  • Resources of Surface Waters of the USSR (1973) The main hydrological characteristics. In: Zilbershtein IA, Stolyarchuk IS (eds) Yenisseisky region, vol 17, Gidrometeoizdat, Leningrad

    Google Scholar 

  • Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244:431–443

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic Press, Massachusetts, 588 pp

    Google Scholar 

  • Schmitt A-D, Chabaux F, Stille P (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet Sci Lett 6731:1–16

    Google Scholar 

  • Semenov AD (ed) (1977) Guide on the chemical analysis of continental surface waters, (Pyкoвoдcтвo пo xимичecким aнaлизaм пpecныx вoд) Gidrometeoizdat, Leningrad, 344 pp (In Russian)

    Google Scholar 

  • Shirokova LS, Pokrovsky OS, Viers J, Klimov SI, Moreva OYu, Zabelina SA, Vorobieva TYa, Dupré B (2010) Diurnal variations of trace elements and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin. Ann Limnol Int J Lim 46:67–75. doi:10.1051/limn/2010011

    Article  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Kirpotin SN, Desmukh C, Pokrovsky BG, Audry S, Viers J (2013a) Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry 113:573–593

    Article  CAS  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Moreva OY, Chupakov AV, Zabelina SA, Klimov SI, Shorina NV, Vorobieva TY (2013b) Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake. Sci Total Environ 463–464:78–90

    Article  Google Scholar 

  • Song L, Liu C-Q, Wang Z-L, Zhu X, Teng Y, Liang L, Tang S, Li J (2011) Iron isotope fractionation during biogeochemical cycle: information from suspended particulate matter (SPM) in Aha Lake and its tributaries, Guizhou. China Chem Geol 280(1–2):170–179

    Article  CAS  Google Scholar 

  • Soyer VG, Semenov AD (1971) Photochemical method of organic carbon determination (ФoÑ‚oxимичecкиe мeÑ‚oды aнaлизa opгaничecкoгo yглepoдa). Gidrokhim Materialy 56:111–120 (in Russian)

    Google Scholar 

  • Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar Chem 124:108–118

    Article  CAS  Google Scholar 

  • Stefansson A, Gislason SR (2001) Chemical weathering of basalts, Southwest Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the oceans. Am J Sci 301:513–556

    Article  CAS  Google Scholar 

  • Stolpe B, Hassellöv M (2010) Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions. Limnol Oceanogr 55(1):187–202

    Google Scholar 

  • Tank SE, Frey KE, Striegl RG, Raymond PA, Holmes RM, McClelland JW, Peterson BJ (2012). Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob Biogeochem Cycles 26: GB0E02. doi:10.1029/2012GB004299

    Google Scholar 

  • Teutsch N, Schmid M, Müller B, Halliday AN, Bürgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic-anoxic boundary in Lake Nyos. Earth Planet Sci Lett 285(1–2):52–60

    Article  CAS  Google Scholar 

  • Tipper E, Galy A, Bickle M (2008) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control? Geochim Cosmochim Acta 72:1057–1075

    Article  CAS  Google Scholar 

  • Tipper E, Gaillardet J, Galy A, Louvat P, Bickle M, Capmas F (2010) Calcium isotope ratios in the world largest rivers: a constraint on the maximum imbalance of oceanic calcium fluxes. Glob Biogeochem Cycles 24: GB3019

    Google Scholar 

  • Viers J, Prokushkin AS, Pokrovsky OS, Auda Y, Kirdyanov AV, Beaulieu E, Zouiten C, Oliva P, Dupré B (2013) Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost. Biogeochemistry 113:435–449

    Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370–380

    Article  Google Scholar 

  • White D, Hinzman L, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski Jr WJ, Holland M, Holmes RM, Huntington H, Kane D, Kliskey A, Lee C, McClelland J, Peterson B, Rupp TS, Straneo F, Steele M, Woodgate R, Yang D, Yoshikawa K, Zhang T (2007) The arctic freshwater system: changes and impacts. J Geophys Res 112: G04S54. doi: 10.1029/2006JG000353

    Google Scholar 

  • Zakharova EA, Pokrovsky OS, Dupré B, Zaslavskaya MB (2005) Chemical weathering of silicate rocks in Aldan Shield and Baikal Uplift: insights from long-term seasonal measurements of solute fluxes in rivers. Chem Geol 214:223–248

    Article  CAS  Google Scholar 

  • Zaslavskaya MB, Tikhotskaya E (1978) Characteristics of the chemical fluxes in the Upper Amur Basin. In: Chemical composition of natural waters in Amur and Transbaikal Region. Vladivostok, pp 46–56 (in Russian)

    Google Scholar 

Download references

Acknowledgments

I would like to thank numerous colleagues who contributed to various parts of this manuscript: Bernard Dupré, Jacques Schott, Jerome Viers, Francois Chabaux, Anatoly Prokushkin, Elena Zakharova, Vladimir Shevchenko, Liudmila Shirokova, Vasileios Mavromatis, Sergey Lapitsky, Svetlana Ilina, Marie-Laure Bagard, Ekaterina Vasyukova, Sergey Kirpotin, Sergey Vorobiev, and Sergey Kulizhsky. Supports from the grant BIO-GEO-CLIM No 14.B25.31.0001 of the Russian Ministry and Education at Tomsk State University and RFFI No 13-05-00890, No 12-05-91055-CNRS_a No 14-05-98815-sever are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg S. Pokrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pokrovsky, O.S. (2016). Measuring and Estimating Fluxes of Carbon, Major and Trace Elements to the Arctic Ocean. In: Mueller, L., Sheudshen, A., Eulenstein, F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_6

Download citation

Publish with us

Policies and ethics