Advertisement

Status Report About Understanding, Monitoring and Controlling Landscape Processes in Siberia

Chapter
  • 917 Downloads
Part of the Springer Water book series (SPWA)

Abstract

Siberia has experienced significant transformations over the past 70 years and particularly since the introduction of the market economy 25 years ago. This has caused implications for landscape processes and for the status of terrestrial and aquatic ecosystems. We review the role of science and technology in monitoring, understanding and developing Siberian landscapes. Data sources were international literature and own expeditions and studies. Russia has great traditions in landscape research disciplines such as geography, soil science, hydrology and agronomy. Substantial progress has been achieved in all these fields over the past 25 years. We found particular progress in landscape research based on international projects in the fields of Arctic research, climate change and carbon cycle. Other fields such as agricultural research remained traditional and underdeveloped. In the 1990s there was a great shift of knowledge and technology in the better-interlinked English-speaking European scientific community. In Russia, at the same time, the introduction of the market economy accelerated environmental problems, caused a greater discrepancy between the livelihoods of urban and rural populations, created new knowledge gaps and enlarged the gap between theory and practice in landscape research. The decay of infrastructure in rural landscapes produced an inhospitable environment for science and technology. In view of this, landscape research in Siberia and in the Far East remained very traditional. Other deficits were based on a lack of communication with the international community due to language barriers. Cooperation between leading Russian and European scientists is still poorly developed and funded. The Russian academic scientific system was highly organized until 2013. However, efficiency was low and scientific outputs did not meet the requirements of decision-makers. The ongoing reform of the academic system entails the risk that precisely the opposite to the desired effects of higher efficiency could come true, such as accelerated brain drain and loss of objectivity. We conclude that Trans-Eurasian research cooperation is becoming very important in the current critical transition phase. Modern analytical methods, sophisticated technologies, models and evaluation schemes for landscape research and environmentally friendly soil management technologies are available in the English-speaking community. Substantial progress in monitoring, understanding and controlling landscape processes in the framework of international research projects could be achieved by applying new research methods in Siberia. We present some of them in the following chapters of this book.

Keywords

Landscape research Soil Water Russia Siberia Academic system Cooperation 

References

  1. Abramov NV, Salova EV (1998) The optimum parameters of factors determining the fertility of leached chernozem in the northern part of the forest-steppe zone in West Siberia. Eurasian Soil Sci 31(10):1131–1136Google Scholar
  2. Afonin AN, Greene SL, Dzyubenko NI, Frolov AN (eds) (2008) Interactive agricultural ecological atlas of Russia and neighboring countries. Econ Plants Diseases Pests Weeds. Available at: http://www.agroatlas.ru. Accessed 28 Dec 2014
  3. Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. Ambio 35(4):169–175. Royal Swedish Academy of Sciences 2006. http://permafrost.su/sites/default/files/Ambio.pdf. Accessed 30 Jan 2015Google Scholar
  4. Ananicheva MD, Krenke AN, Gregory A. Kapustin GA (2011) Recent and forecasted change of glaciers of the Northeastern Asia. Geogr Environ Sustain 3(4):19–33, http://int.rgo.ru/wp-content/uploads/2011/12/GES3-11.pdf. Accessed 30 Jan 2015
  5. Antipov AN, Korytny LM, Plyusnin VM (2006) Siberia and its geographical research, pp 3–36. In: Antipov AN (ed) Geography of Siberia. Research India Publications, New Delhi, p 235Google Scholar
  6. Arzhanov MM, Demchenko PF, Eliseev AV, Mokhov II (2008) Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya Atmos Oceanic Phys October 2008, 44(5):548–566 http://link.springer.com/article/10.1134/S0001433808050022. Accessed 30 Jan 2015Google Scholar
  7. Bazhenova OI, Kobylkin DV (2013) The dynamics of soil degradation processes within the Selenga basin at the agricultural period. Geogr Nat Res 34(3):221–227Google Scholar
  8. Beer C, Fedorov AN, Torgovkin Y (2013) Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation. Earth Syst Sci Data 5:305–310. http://www.earth-syst-sci-data.net/5/305/2013/essd-5-305-2013.pdf. Accessed 30 Jan 2015Google Scholar
  9. Behrendt A, Fischer A, Kaiser T, Eulenstein F, Ortmann S, Berger A, Mueller L (2014) Multi-Species Grazing on Deer Farms. In: Mueller L, Saparov A, Lischeid G. (eds), Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 491–501 http://link.springer.com/chapter/10.1007/978-3-319-01017-5_30. Accessed 27 Feb 2015
  10. Bergen KM, Hitztaler SK, Kharuk VyI, Krankina ON, Loboda TV, Zhao T, Shugart HH, Sun G (2013) Human dimensions of environmental change in Siberia, In: Groisman PJ, Gutman G (eds) Regional environmental changes in Siberia and their global consequences (Chap. 7), Springer Environmental Science and Engineering 2013, ISBN: 978-94-007-4568-1 (Print) 978-94-007-4569-8 (Online). http://link.springer.com/chapter/10.1007%2F978-94-007-4569-8_7. Accessed 30 Jan 2015
  11. Blome T (2014) Influence of different permafrost processes on the large-scale energy and water cycles over Siberia reports on earth system science 150, p 159. http://pubman.mpdl.mpg.de/pubman/item/escidoc:2039431/component/escidoc:2039432/WEB_BzE_150.pdf. Accessed 30 Jan 2015
  12. Boike J, Kattenstroth B, Abramova K, Bornemann N, Chetverova A, Fedorova I, Fröb K, Grigoriev M, Grüber M, Kutzbach L, Langer M, Minke M, Muster S, Piel K, Pfeiffer E-M, Stoof G, Westermann S, Wischnewski K, Wille C, Hubberten H-W (2012) Baseline characteristics of climate, permafrost, and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998 − 2011). Biogeosci Discuss 9:13627–13684. doi: 10.5194/bgd-9-13627-2012 CrossRefGoogle Scholar
  13. Brown LR (2012) Full planet, empty plates: the new geopolitics of food scarcity. Earth Policy Institute, p 160. ISBN: 978-0-393-34415-8, http://www.earth-policy.org/books/fpep. Accessed 30 Jan 2015
  14. Callaghan TV, Velichko AA, Borisova OK (2011), Tundra in a changing climate, geography environment sustainability 3(4):4–18, http://int.rgo.ru/wp-content/uploads/2011/12/GES3-11.pdf. Accessed 30 Jan 2015Google Scholar
  15. Chepinoga VV (2012) Wetland vegetation database of Baikal Siberia (WETBS). Biodiv Ecol. Vegetation databases for the 21st century 4:311. http://www.biodiversity-plants.de/biodivers_ecol/publishing/b-e.00107.pdf. Accessed 30 Jan 2015Google Scholar
  16. Chepinoga V, Lopatovskaja O, Mehring M, Pudwill R (2004) Baikalsee-Exkursion 2004 Exkursionsbericht, http://exkursionen.pr-naturetours.de/Exkursionsbericht_2004.pdf. Accessed 28 Dec 2014
  17. Chuprova IL (2006) Optimization of technogene landscapes in the high North (Oптимизaция тexнoгeнныx лaндшaфтoв кpaйнeгo ceвepa, Hopильcкий пpoмышлeнный paйoн, п-oв Taймыp) Diss. Petrozavodsk 2006, http://earthpapers.net/optimizatsiya-tehnogennyh-landshaftov-kraynego-severa. Accessed 30 Jan 2015
  18. DAAD (2014) Go East. https://goeast.daad.de/de/22624/index.html. Accessed 28 Dec 2014
  19. Dannowski R, Schindler R, Cremer N, Eulenstein F (2014) Methods of In Situ Groundwater Quality Monitoring: Basis for the Efficiency Survey of Agricultural Groundwater Conservation Measures. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 275–288. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_16. Accessed 28 Dec 30 Jan 2015
  20. Djanibekov N, Sommer R (2014) Integrated decision support for sustainable and profitable land management in the lowlands of Central Asia. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 407–422. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_24. Accessed 30 Jan 2015
  21. Dronin N, Kirilenko A (2011) Climate change, food stress, and security in Russia. Reg Environ Change 11(Suppl 1):S167–S178. doi: 10.1007/s10113-010-0165-x CrossRefGoogle Scholar
  22. Eberle J, Clausnitzer S, Hüttich C, Schmullius C (2013) Multi-source data processing middleware for land monitoring within a web-based spatial data infrastructure for Siberia. ISPRS Int J Geo-Inf 2:553–576. doi: 10.3390/ijgi2030553 CrossRefGoogle Scholar
  23. Eijkelkamp (2014) Eijkelkamp Agrisearch Equipment. http://en.eijkelkamp.com/. Accessed 30 Jan 2015
  24. Eremina IG (2009) Alteration of Chernozem soil properties in Khakassia under long-term agricultural use (Измeнeниe cвoйcтв чepнoзeмoв xaкacии пpи длитeльнoм eльcкoxoзяйcт-вeннoм иcпoльзoвaнии) Dissertation Ulan-Ude 2009. http://www.dissercat.com/content/izmenenie-svoistv-chernozemov-khakasii-pri-dlitelnom-selskokhozyaistvennom-ispolzovanii. Accessed 11 Dec 2014
  25. Ermolov YV, Makhatkov ID, Milyaeva EV (2011) Application of conductance measuring method for studying of self-cleaning of a salted peatbog, pp 168–170. In: Vompersky SE (ed) West Siberian peatlands and carbon cycle: past and present. Proceedings of the third international field symposium (Khanty-Mansyisk June 27–July 5, 2011), Novosibirsk, p 220. ISBN 978-5-9611-066-2Google Scholar
  26. Eulenstein F, Tauschke M, Lana M, Sheudshen AK, Dannowski R, Schindler R, Drechsler H (2014) Nutrient balances in agriculture: a basis for the efficiency survey of agricultural groundwater conservation measures. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 263–273. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_15. Accessed 30 Jan 2015
  27. Evans RG (2014) Advanced technologies for irrigated cropping systems. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 475–489. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_29. Accessed 30 Jan 2015
  28. Fedorov A, Konstantinov P (2003) Observations of surface dynamics with thermokarst initiation, Yukechi site, Central Yakutia. In: Permafrost. Phillips, Springman & Arenson (eds) pp 239–243, Swets & Zeitlinger, Lisse. ISBN 90 5809 582 7. http://www.arlis.org/docs/vol1/ICOP/55700698/Pdf/Chapter_043.pdf. Accessed 30 Jan 2015
  29. Funk R, Hoffmann C, Reiche M (2014) Methods for quantifying wind erosion in steppe regions. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 315–327. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_18. Accessed 30 Jan 2015
  30. Gamzikov GP, Nozov V (2010) Role of crop nutrition in narrowing the yield gap for spring wheat in Siberia. Better crops with plant food. A Publication of the International Plant Nutrition Institute (IPNI) XCIV (94), No. 4, p. 9–11Google Scholar
  31. Gessner U, Naeimi V, Klein I, Kuenzer C, Klein D, Dech S (2012) The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change. http://dx.doi.org/10.1016/j.gloplacha.2012.09.007. Accessed 30 Jan 2015
  32. Glagolev M, Kleptsova I, Filippov I, Maksyutov S, Machida T (2011) Regional methane emission from West Siberia mire landscapes. Environ Res Lett 6(4):7. doi: 10.1088/1748-9326/6/4/045214. http://iopscience.iop.org/1748-9326/6/4/045214/pdf/1748-9326_6_4_045214.pdf. Accessed 30 Jan 2015Google Scholar
  33. Godbersen L, Utermann J, Duijnisveld HM (2014) Methods in the exploratory risk assessment of trace elements in the soil-groundwater pathway. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 289–314. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_17. Accessed 30 Jan 2015
  34. Golubeva EI, Plyushkyavichyute YuA, Rees WG, Tutubalina OV (2010) Remote sensing methods for phytomass estimation and mapping of tundra vegetation. Geogr Environ Sustain 3(3):4–13. http://www.geogr.msu.ru/GESJournal/contents.php?iid=5&menupos=5. Accessed 30 Jan 2015
  35. Gordov EP, Bryant K, Bulygina ON, Csiszar I, Eberle J, Fritz S, Gerasimov I, Gerlach R, Hese S, Kraxner F, Lammers RB, Leptoukh G, Loboda TV, McCallum I, Obersteiner M, Okladnikov IG, Pan J, Prusevich AA, Razuvaev VyN, Romanov P, Rui H, Schepaschenko D, Schmullius CC, Shen S, Shiklomanov AI, Shulgina TM, Shvidenko AZ, Titov AG (2013) Development of information-computational infrastructure for environmental research in Siberia as a baseline component of the Northern Eurasia earth science partnership initiative (NEESPI) studies. In: Groisman PJ, Gutman G (eds) Regional environmental changes in Siberia and their global consequences (Chap. 2), Springer Environmental Science and Engineering. ISBN: 978-94-007-4568-1 (Print) 978-94-007-4569-8 (Online)Google Scholar
  36. Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob Change Biol 14:1367–1381. doi: 10.1111/j.1365-2486.2008.01568.x CrossRefGoogle Scholar
  37. Gutman G, Groisman PYa, Gordov EP, Shiklomanov AI, Shiklomanov NI, Shvidenko AZ, Bergen KM, Baklanov AA (2013) Summary and outstanding scientific challenges for research of environmental changes in Siberia. In: Groisman PJ, Gutman G (eds) Regional environmental changes in Siberia and their global consequences (Chap. 9), Springer Environmental Science and Engineering 2013. ISBN: 978-94-007-4568-1 (Print) 978-94-007-4569-8 (Online). http://link.springer.com/chapter/10.1007/978-94-007-4569-8_9. Accessed Jan 30 2015
  38. Helming K, Diehl K, Bach H, Dilly O, König B, Kuhlman T, Perez-Soba M, Sieber S, Tabbush P, Tscherning K, Wascher D, Wiggering H (2011) Ex ante impact assessment of policies affecting land use, Part A: analytical framework. Ecol Soc 16(1):1–17 Art.27Google Scholar
  39. Hennings V (2013) Ackerbauliches Ertragspotential der Böden in Deutschland. http://www.bgr.bund.de/DE/Themen/Boden/Ressourcenbewertung-management/Ertragspotential/Ertragspotential_node.html. Accessed 30 Jan 2015
  40. Hermann A, Schleifer S, Wrbka T (2011) The concept of ecosystem services regarding landscape research: a review. Living Rev Landscape Res 5(1). http://landscaperesearch.livingreviews.org/Articles/lrlr-2011-1/. Accessed 30 Jan 2015
  41. Hertel C, von Unold G (2014) Third-generation lysimeters: scientific engineered monitoring systems. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 175–184. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_9. Accessed 30 Jan 2015
  42. Hese S, Schmullius C (2008) Object oriented oil spill contamination mapping in West Siberia with Quickbird data. Object-based image analysis. Lecture notes in geoinformation and cartography, pp 367–382. http://link.springer.com/chapter/10.1007%2F978-3-540-77058-9_20. Accessed 30 Jan 2015
  43. IAP (2013) The global network of science academies. Russian Academy of Sciences. http://www.interacademies.net/Academies/ByRegion/CentralEasternEurope/13383/13385.aspx. Accessed 30 Jan 2015
  44. Illiger P, Frühauf M, Schmidt G, Meinel T, Belaev VI, Sianteva MM, Kasarjyan M (2014) Ökosystemkonversion und ihre Folgen bezüglich der Kohlenstoffsenken-Funktion in der westsibirischen Kulundasteppe. In: Grunewald K, Bastian O, Drozdov A, Grabovsky V (eds) Erfassung und Bewertung von Ökosystemdienstleistungen (ÖSD): Erfahrungen, insbesondere aus Deutschland und Russland. Bonn: Bundesamt für Naturschutz, (BfN-Skripten; 373), pp 300–319. http://www.bfn.de/fileadmin/MDB/documents/service/Skript_373.pdf. Accessed 23 Dec 2014
  45. Isachenko AG (2013) Geographical aspects of life sustenance of small-numbered peoples of the north. Reg Res Russia 3(2):187–203Google Scholar
  46. Ivanova GA, Conard SG, Kukavskaya EA, McRae DJ (2011) Fire impact on carbon storage in light conifer forests of the Lower Angara region, Siberia. Env Res Lett (6):045203. doi: 10.1088/1748-9326/6/4/045203. http://iopscience.iop.org/1748-9326/6/4/045203/. Accessed 30 Jan 2015Google Scholar
  47. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorology and atmospheric physics 63(1–2). International workshop on limited-area and variable resolution models, Beijing, PR China, pp 119–129. ISSN: 0177-7971. doi: 10.1007/BF01025368 Google Scholar
  48. Juszczak R, Humphreys E, Acosta M, Michalak-Galczewska M, Kayzer D, Olejnik J (2013) Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366(1–2):505–520CrossRefGoogle Scholar
  49. Kassam AH, Friedrich T, Shaxson F, Reeves T, Pretty J, de Moraes Sa JC (2011). Production systems for sustainable intensification—integrating productivity with ecosystem services. Technology assessment—theory and praxis, special issue on feeding the world. http://www.fao.org/ag/ca/CA-Publications/TATuP_2011.pdf. Accessed 30 Jan 2015
  50. Kerzencev AS, Meissner R (Eds.) (2006) Modelirovanie erozionnych processov na territorii malogo vodosbornogo bassejna, Nauka Moscow 2006, p 224. (in Russian) ISBN 5-02-03425-XGoogle Scholar
  51. Kharuk VI, Ranson KJ, Dvinskaya ML, Im ST (2011) Wildfires in northern Siberian larch dominated communities. Env Res Lett (6):045208. doi: 10.1088/1748-9326/6/4/045208. http://iopscience.iop.org/1748-9326/6/4/045208. Accessed 30 Jan 2015Google Scholar
  52. Khmelev VA, Tanasienko AA (2009) Chernozem soils of Novosibirsk oblast: problems of their rational use and preservation. Contemp Prob Ecol 2(6):631–641CrossRefGoogle Scholar
  53. Khomutova MIu, Beer C, Lucht W, Gerten D, Thonicke K, Schmullius C (2007) Effects of soil freezing and thawing on vegetation carbon density in Siberia: a modeling analysis with the Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Global Biogeochem Cycles 21, GB1012, doi: 10.1029/2006GB002760
  54. Khvorostyanov DV, Krinner G, Ciais P, Heimann M, Zimov SA (2008) Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B 60:250–264. doi: 10.1111/j.1600-0889.2007.00333.x CrossRefGoogle Scholar
  55. Kirsta YuB (2006) System-analytical modelling-Part II wheat biotime run and yield formation. Agroclimatic potential, the Le Chatelier principle, and changes in agroclimatic potential and climate in Russia and the U.S. Ecol Model 191(3–4):331–345, 5 February 2006. http://www.sciencedirect.com/science/article/pii/S0304380005002802. Accessed 30 Jan 2015
  56. Klein I, Gessner U, Künzer C (2014) Generation of up to date land cover maps for Central Asia. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 329–346. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_19. Accessed 30 Jan 2015
  57. Koneva IV, Batuev AR (2014) The biogeographical map series for Asian Russia. Geogr Nat Res 35(1):102–108. http://link.springer.com/article/10.1134/S1875372814010156. Accessed 30 Jan 2015Google Scholar
  58. Khoroshev AW, Bastian O, Grunewald K (2014) Landschaftsökologische Grundlagen und Prinzipien der Bewertung von Ökosystemdienstleistungen. In: Grunewald K, Bastian O, Drozdov A, Grabovsky V (eds) Erfassung und Bewertung von Ökosystemdienstleistungen (ÖSD): Erfahrungen, insbesondere aus Deutschland und Russland. Bonn: Bundesamt für Naturschutz, (BfN-Skripten; 373), Sp. 64–87. http://www.bfn.de/fileadmin/MDB/documents/service/Skript_373.pdf. Accessed 23 Dec 2014
  59. Korytny LM, Kichigina NV, Gartsman BI, Gubareva TS (2007) Rain floods of the far east and East Siberia extreme hydrological events: new concepts for security NATO science series, vol 78, pp 125–135Google Scholar
  60. Krasnoshchekov YN, Evdokimenko MD, Cherednikova YS (2013) Effect of fires on the ecosystems of subTaiga forest-steppe forests in the southwestern Baikal Region. Contemp Prob Ecol 6(5):477–485. http://link.springer.com/article/10.1134%2FS1995425513050053. Accessed 30 Jan 2015Google Scholar
  61. KULUNDA project (2014) Wie verhindert man die nächste “Global Dust Bowl”?—Ökologische und Ökonomische Strategien zur nachhaltigen Landnutzung in Russischen Steppen: Ein Beitrag zur Anpassung an den Klimawandel. http://www.kulunda.eu/. Accessed 28 Dec 2014
  62. Lantuit H, Atkinson D, Overduin PP, Grigoriev M, Rachold V, Hubberten H-W, Grosse G (2011) Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006. Polar Res 30:7341. doi: 10.3402/polar.v30i0.7341 CrossRefGoogle Scholar
  63. Lapenis A, Shvidenko A, Schepaschenko D et al (2005) Acclimation of Russian forests to recent changes in climate. Global Change Biol 11:2090–2102. doi: 10.1111/j.1365-2486.2005.001069.x Google Scholar
  64. Lebedeva MP, Lopukhina OV (2006) Specificity of chemical and mineralogical composition of salts in Sor Solonchaks and Salt Lakes of the Kulunda Steppe, Western Siberia. In: 18th world congress of soil science—Philadelphia, Pennsylvania, USA, 9–15 July 2006. https://a-c-s.confex.com/crops/wc2006/techprogram/P19092.HTM. Accessed 30 Jan 2015
  65. Lischeid G (2014a) Landscape hydrology of rural areas: Challenges and tools. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 107–113. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_5. Accessed 30 Jan 2015
  66. Lischeid G (2014b) Non-linear approaches to assess water and soil quality. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 365–378, http://link.springer.com/chapter/10.1007/978-3-319-01017-5_21. Accessed 30 Jan 2015
  67. Lischeid G, Natkhin M (2011) The potential of land-use change to mitigate water scarcity in Northeast Germany: a review. Erde 142(1–2):97–113Google Scholar
  68. Lopez CML, Brouchkov A, Nakayama H, Takakai F, Fedorov AN, Fukuda M (2007) Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia. Hydrol Process 21:103–109. doi: 10.1002/hyp.6224 CrossRefGoogle Scholar
  69. Mack MC, Finlay JC, Demarco J, Chapin F, Schuur EA, Neff JC, Zimov SA (2010) Nitrogen and phosphorus in Yedoma soils of Northeast Siberia: stocks, fluxes and the ecosystem consequences of nutrient release from permafrost thaw. Am Geophys Union Fall Meet, abstract #GC52A-05. http://adsabs.harvard.edu/abs/2010AGUFMGC52A..05M. Accessed 30 Jan 2015
  70. Mander Ü, Helming, K, Wiggering H (2007) Multifunctional land use: meeting future demands for landscape goods and services. Multifunctional Land Use, pp 1–13. http://link.springer.com/chapter/10.1007/978-3-540-36763-5_1. Accessed 30 Jan 2015
  71. Meinel T, Grunwald L-C, Akshalov K (2014) Modern technologies for soil management and conservation in Northern Kazakhstan. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp. 455–464. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_27. Accessed 30 Jan 2015
  72. Meissner R, Rupp H, Seyfarth M (2014) Advanced technologies in lysimetry. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 159–173. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_8. Accessed 30 Jan 2015
  73. Mi Y, van Huissteden J, Parmentier FJW, Gallagher A, Budishchev A, Berridge CT, Dolman AJ (2014) Improving a plot-scale methane emission model and its performance at a northeastern Siberian tundra site. Biogeosciences 11:3985–3999. doi: 10.5194/bg-11-3985-2014 CrossRefGoogle Scholar
  74. Michel R, Dannowski R (2014) Using soil–water–plant models to improve the efficiency of irrigation. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 379–387. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_22. Accessed 30 Jan 2015
  75. Mikheeva I (2013) Use of soil survey database for the probabilistic evaluation of soil cover transformation in the semiarid zone of western Siberia developments in soil classification, land use planning and policy implications, pp 305–313. http://link.springer.com/chapter/10.1007/978-94-007-5332-7_15. Accessed 30 Jan 2015
  76. Morgenstern A, Ulrich M, Günther F, Roessler S, Fedorova IV, Rudaya NA, Wetterich S, Boike J, Schirrmeister L (2013) Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201: 363–379. http://dx.doi.org/10.1016/j.geomorph.2013.07.011. Accessed 30 Jan 2015Google Scholar
  77. Moskalenko NG (2013) Impact of climate warming on vegetation cover and permafrost in West Siberia northern Taiga. Nat Sci 5(1A):144–148. http://dx.doi.org/10.4236/ns.2013.51A022. Accessed 11 Dec 2014Google Scholar
  78. Mueller L, Schindler U, Mirschel W, Shepherd TG, Ball B, Helming K, Rogasik J, Eulenstein F, Wiggering H (2010) Assessing the productivity function of soils: a review. Agronomy for Sustainable Development 30(3):601–614 http://dx.doi.org/10.1051/agro/2009057 Google Scholar
  79. Mueller L, Schindler U, Shepherd TG, Ball BC, Smolentseva E, Hu C, Hennings V, Schad P, Rogasik J, Zeitz J, Schlindwein SL, Behrendt A, Helming K, Eulenstein F (2012) A framework for assessing agricultural soil quality on a global scale. Arch Agro Soil Sci 58(1):S76–S82CrossRefGoogle Scholar
  80. Mueller L, Schindler U, Ball BC, Smolentseva E, Sychev VG, Shepherd TG, Qadir M, Helming K, Behrendt A, Eulenstein F (2014a) Productivity potentials of the global land resource for cropping and grazing. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 115–142. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_6. Accessed 30 Jan 2015
  81. Mueller L, Behrendt A, Shepherd TG, Schindler U, Ball BC, Khudyaev S, Kaiser T, Dannowski R, Eulenstein F (2014b) Simple field methods for measurement and evaluation of grassland quality. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 199–222. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_11. Accessed 30 Jan 2015
  82. Mueller L, Schindler U, Shepherd TG, Ball BC, Smolentseva E, Pachikin K, Hu C, Hennings V, Sheudshen AK, Behrendt A, Eulenstein F, Dannowski R (2014c) The Muencheberg Soil Quality Rating for assessing the quality of global farmland. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 235–248. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_13. Accessed 30 Jan 2015
  83. Nakano T, Wataru T, Inoue G, Fukuda M, Yasuoka Y (2006) Temporal variations in soil–atmosphere methane exchange after fire in a peat swamp forest in West Siberia. Soil Sci Plant Nutr 52:77–88. doi: 10.1111/j.1747-0765. 2006.00004.x, http://www.agr.hokudai.ac.jp/env/ctc_siberia/bibliography/pdf/Nakano2006.pdf. Accessed 20 Dec 2014
  84. Nechaeva EG, Belozerntseva IA, Naprasnikova EV, Vorobyeva IB, Davydova ND, Dubynina SS, Vlasova NV (2010) Monitoring and forecasting of the substance-dynamical state of geosystems in the Siberian regions (Moнитopинг и пpoгнoзиpoвaниe вeщecтвeннo-динaмичecкoгo cocтoяния гeocиcтeм cибиpcкиx peгиoнoв). Novosibirsk, Nauka, p 360. ISBN 978-5-02-023315-7. http://irigs.irk.ru/docs/Nechaeva/Nechaeva_et_al_2010.pdf. Accessed 30 Jan 2015
  85. Nendel C (2014) MONICA: a simulation model for nitrogen and carbon dynamics in agro-ecosystems. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 389–405. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_23. Accessed 30 Jan 2015
  86. Newell J (2004) The Russian far east: a reference guide for conservation and development. McKinleyville, CA: Daniel & Daniel. p 466. http://urbansustainability.snre.umich.edu/wp-content/uploads/2011/04/RFE.04.pdf. Accessed 30 Jan 2015
  87. Ollesch G, Demidov V, Volokitin M, Voskamp M, Abbt-Braun G, Meissner R (2008) Sediment and nutrient dynamics during snowmelt runoff generation in a southern Taiga catchment of Russia. Agric Ecosyst Environ 126(2008):229–242CrossRefGoogle Scholar
  88. Olonova MV, Zhang YM (2013) Alien invasive species in Siberia: current status and problem. J Arid Land 5(4):428–433Google Scholar
  89. Osherenko G (1995) Indigenous political and property rights and economic/environmental reform in Northwest Siberia. Post-Soviet Geogr 36(4):225–237Google Scholar
  90. Parham LM, Prokushkin AS, Pokrovsky OS, Titov SV, Grekova E, Shirokova LS, McDowell WH (2013) Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau. Biogeochemistry 116:55–68. doi: 10.1007/s10533-013-9922-5 CrossRefGoogle Scholar
  91. Pavlov AV (1994) Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafrost Periglac Process 5:101–110. doi: 10.1002/ppp.3430050204 CrossRefGoogle Scholar
  92. Pavlov AV, Moskalenko NG (2002) The thermal regime of soils in the north of Western Siberia. Permafrost Periglac Process 13:43–51. doi: 10.1002/ppp.409 CrossRefGoogle Scholar
  93. Pokrovsky OS, Viers J, Dupre B, Chabaux F, Gaillardet J, Audry S, Prokushkin AS, Shirokova LS, Kirpotin SN, Lapitsky SA, Shevchenko VP (2012) R. Geoscience 344:663–677CrossRefGoogle Scholar
  94. Polterovich V (2013) Reform of the Russian academy of sciences: an expert analysis: part I. Reform of the Russian academy of sciences: a project of the ministry of education and science CEMI RAS. 2013. MPRA Paper No. 49291. Online at: http://mpra.ub.uni-muenchen.de/49291/1/MPRA_paper_49291.pdf/. Accessed 30 Jan 2015
  95. Polyakov IV, Bolton R, Greve R, Hutchings J, Kim SJ (2014) Promoting international, multidisciplinary efforts in detecting and understanding high-latitude changes, and searching for their global impacts. Polar Sci 8(2):53–56. http://www.sciencedirect.com/science/article/pii/S187396521400022X. Accessed 30 Jan 2015Google Scholar
  96. Pomazkina LV, Lubnina EV, Zorina SYu, Kotova LG (1996) Dynamics of CO2 evolution in grey forest soil of the Baikal forest-steppe. Biol Fertil Soils 23(3):327–331Google Scholar
  97. Prokushkin AS, Pokrovskiy OS, Shirokova LS, Korets MA, Viers J, Prokushkin SG, Amon RMW, Guggenberger G, McDowell WH (2011) Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau. Environ Res Let 6, Art. No. 045212Google Scholar
  98. Pugacheva IYu, Sid’ko AF, Shevyrnogov AP (2010) A study of backscattered spectra dynamics of agricultural crops during growth period on the territory of the Krasnoyarskii Krai (Russia). Adv Space Res 45(10):1224–1230. http://dx.doi.org/10.1016/j.asr.2009.11.020. Accessed 30 Jan 2015Google Scholar
  99. Puzyreva AYu (2013) Influence of cultivars and seeding time on yield and grain quality of barley in different agroclimatic zones of the Irkutsk Oblast. (Bлияниe copтa и cpoкoв пoceвa нa ypoжaйнocть и кaчecтвo зepнa ячмeня в paзныx aгpoклимaтичecкиx зoнax Иpкyтcкoй Oблacти) dissertation Ulan-Ude 2013 http://www.bgsha.ru/files/docs/aspirantura/avtoref_puzirevoi.pdf. Accessed 30 Jan 2015
  100. Quegan S, Beer C, Shvidenko A, McCallum I, Handoh IC, Peylin P, Roedenbeck C, Lucht W, Nilson S, Schmullius C (2011) Estimating the carbon balance of central Siberia using a landscape–ecosystem approach, atmospheric inversion and Dynamic Global Vegetation Models. Glob Change Biol 17:351–365. doi: 10.1111/j.1365-2486.2010.02275.x CrossRefGoogle Scholar
  101. Ragulina MV (2013) Local community and cultural landscape an contemporary world (Лoкaльнoe cooбщecтвo и кyльтypный лaндшaфт в coвpeмeннoм миpe). Modern Prob Sci Edu (Coвpeмeнныe пpoблeмы нayки и oбpaзoвaния) 6(50) (Electronic Journal). URL: http://www.science-education.ru/pdf/2013/6/192.pdf. Accessed 30 Jan 2015
  102. Romanenkov V, Rukhovich D, Koroleva P, McCarty JL (2014) Estimating black carbon emissions from agricultural burning. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 347–364. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_20. Accessed 30 Jan 2015
  103. Romanov AN, Khvostov IV, Pavlov VE, Vinokurov YuI (2014) Remote monitoring of wetland areas of Western Siberia using SMOS (ESA) data. J Atmos Oceanic Opt 27(4):313–316. http://link.springer.com/article/10.1134/S1024856014040150. Accessed 30 Jan 2015Google Scholar
  104. Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO (2007) Past and recent changes in air and permafrost temperatures in Eastern Siberia. Global Planet Change 56(3–4):399–413. http://www.sciencedirect.com/science/article/pii/S0921818106001974. Accessed 30 Jan 2015Google Scholar
  105. Rozhkov VA, Alyabina IO, Kolesnikova VM, Molchanov EN, Stolbovoi VS, Shoba SA (2010) Soil-geographical database of Russia Eurasian Soil Sci 43(1):1–4. http://link.springer.com/article/10.1134/S1064229310010011. Accessed 11 Dec 2014Google Scholar
  106. Rusalimova O, Barsukov P (2006) Decomposition of labile and recalcitrant soil organic matter of Gleyic Cryosols in permafrost region of Siberia. In: Hatano R, Guggenberger G (eds) Symptom of environmental change in Siberian permafrost region, pp 93–102, Hokkaido University Press, Sapporo. http://www.agr.hokudai.ac.jp/env/ctc_siberia/pdf_book/09_Barsukov.pdf. Accessed 28 Dec 2014
  107. Rzaeva VV, Fedotkin VA (2013) Crop yield of a cereal-fallow rotation at different primary tillage (Уpoжaйнocть кyльтyp зepнoпapoвoгo ceвooбopoтa пpи вoздeлывaнии пo ocнoвнoй oбpaбoткe пoчвы). http://sibac.info/sibac.info/2009-07-01-10-21-16/10112. Accessed 30 Jan 2015
  108. Schaldach R, Priess JA (2008) Integrated Models of the Land System: A review of modelling approaches on the regional to global scale. Living Rev. Landscape Res 2(1). http://landscaperesearch.livingreviews.org/Articles/lrlr-2008-1/. Accessed 30 Jan 2015
  109. Schepaschenko DG, Mukhortova LV, Shvidenko AZ, Vedrova EF (2013) The pool of organic carbon in the soils of Russia. Eurasian Soil Sci 46(2):107–116Google Scholar
  110. Schepaschenko D, McCallum I, Shvidenko A, Fritz S, Kraxner F, Obersteiner M (2011) A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. J Land Use Sci 6(4):245–259CrossRefGoogle Scholar
  111. Schiermeier Q (2013) Russian academy leader speaks out on reforms. Vladimir Fortov highlights the need for a clear separation between science and administration NATURE | NEWS 20. http://www.nature.com/news/russian-academy-leader-speaks-out-on-reforms-1.13791. Accessed 30 Jan 2015
  112. Schindler U (2014a) A novel method for quantifying soil hydraulic properties. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 145–158. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_7. Accessed 30 Jan 2015
  113. Schindler U (2014b) A field method for quantifying deep seepage and solute leaching. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 185–198. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_10. Accessed 30 Jan 2015
  114. Schindler U, Mueller L (2010) Data of hydraulic properties of North East and North Central German soils. Earth Syst Sci Data 2(2):189–194. http://dx.doi.org/doi:10.5194/essd-2-189-2010. http://www.earth-syst-sci-data.net/2/189/2010/essd-2-189-2010.pdf, http://publ.ext.zalf.de/publications/3e0c8223-b0d3-44c9-9477-a6ec2d80f6a7.pdf. Accessed 30 Jan 2015Google Scholar
  115. Schindler U, Müller L, Dannowski R, Barkusky D, Francis G (2010) Long-term measurements to quantify the impact of arable management practices on deep seepage and nitrate leaching. Long-term ecological research: between theory and application. Springer Science + Business Media B.V, Dordrecht, pp 243–252CrossRefGoogle Scholar
  116. Schirrmeister L, Froese D, Tumskoy V, Grosse G, Wetterich S (2013) Yedoma: late pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias SA (ed) The encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 542–552CrossRefGoogle Scholar
  117. Semenova T (2007) Political mobilisation of northern indigenous peoples in Russia. Polar Record 43(224):23–32CrossRefGoogle Scholar
  118. Semiletov IP, Shakhova NE, Sergienko VI, Pipko II, Dudarev OV (2012) On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system. Focus on environmental, socio-economic and climatic changes in northern eurasia and their feedbacks to the global earth system. Environ Res Lett 7:015201. doi: 10.1088/1748-9326/7/1/015201 CrossRefGoogle Scholar
  119. Shaw DJB, Oldfield J (2007) Landscape science: a Russian geographical tradition. Ann Assoc Am Geogr 97(1):111–126. ISSN 0004-5608. http://eprints.gla.ac.uk/6812/. Accessed 30 Jan 2015Google Scholar
  120. Shiklomanov NI, Nelson FE, Streletskiy DA, Hinkel KM, Brown J (2008) The circumpolar active layer monitoring (CALM) program: data collection, management, and dissemination strategies. In: Proceedings of the ninth international conference on permafrost. vol 29. http://permafrost.su/sites/default/files/ShiklomanovNik_final.pdf. Accessed 30 Jan 2015
  121. Shirokova LS, Pokrovsky OS, Kirpotin SN, Desmukh C, Pokrovsky BG, Audry S, Viers J (2013) Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry 113(1–3):573–593. http://link.springer.com/article/10.1007%2Fs10533-012-9790-4. Accessed 30 Jan 2015Google Scholar
  122. Shoba SA, Stolbovoi VS, Alyabina IO, Molchanov EN (2008) Soil-geographic database of Russia. Eurasian Soil Sci 41(9):907–913Google Scholar
  123. Shtro EV (2013) Improving the agrotechnology for brewing barley in the southern forest steppe of West Siberia (Coвepшeнcтвoвaниe aгpoтexнoлoгии пивoвapeннoгo ячмeня в южнoй лecocтeпи Зaпaднoй Cибиpи) Dissertation Omsk 2013. http://vak2.ed.gov.ru/catalogue/details/119139?print=true. Accessed 30 Jan 2015
  124. Shvidenko A, Schepaschenko D, McCallum I, Nilsson S (2011) Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Climatic change, vol 103, pp 137–157. In: White T, Jonas M, Nahorski Z, Nilsson S (eds) Greenhouse gas inventories: dealing with uncertainty. Springer, Netherlands, pp 137–157. doi: 10.1007/978-94-007-1670-4_9. http://link.springer.com/chapter/10.1007%2F978-94-007-1670-4_9. Accessed 30 Jan 2015Google Scholar
  125. Siewert C, Kucˇerik J (2014) Practical applications of thermogravimetry in soil science. Part 3: I interrelations between soil components and unifying principles of pedogenesis. J Therm Anal Calorim. doi: 10.1007/s10973-014-4256-7 Google Scholar
  126. Siewert C, Barsukov P, Demyan S, Babenko A, Lashchinsky N, Smolentseva EN (2014) Teaching soil science and ecology in West Siberia: 17 years of field courses. Environ Edu Res 20(6):858–876. http://dx.doi.org/10.1080/13504622.2013.839778. Accessed 28 Dec 2014Google Scholar
  127. Skomoroshchenko OV, Korchagina IA, Shchitov AG, Yushkevich LV (2013) Effect of tillage systems and intensification factors on spring wheat yielding capacity in southern forest-steppe of West Siberia, Russian text. http://www.asau.ru/files/vestnik/2013/1/Agronomy_Jushkevich.pdf. Accessed 30 Jan 2015
  128. Smolentseva EN, Smolentsev B, Pachikin K, Mueller L (2014) Assessing the soil quality and crop yield potentials of some soils of Eurasia. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Asian Russia. Springer International Publishing, Cham, pp 505–517. http://link.springer.com/chapter/10.1007%2F978-3-319-01017-5_31. Accessed 30 Jan 2015Google Scholar
  129. Solntseva NP, Sadov AP (2000) Technogenic halogenesis in the soils of forest-tundra and northern Taiga ecosystems in Western Siberia. J Pochvovedenie (9):1127–1141. ISSN0032-180X Record Number 20013007536 http://www.cabdirect.org/abstracts/20013007536.html. Accessed 30 Jan 2015
  130. Sorokin IB (2011) Bioresources in the intensification of agriculture in Siberia. http://agris.fao.org/agris-search/search.do?f=2011/RU/RU1103.xml;RU2011000177. Accessed 30 Jan 2015
  131. Sorokin ND (2009) Microbiological monitoring of disturbed ground ecosystems of Siberia. Biol Bull 36(6):619–623. http://link.springer.com/article/10.1134/S1062359009060119. Accessed 30 Jan 2015Google Scholar
  132. Stolboboi V (2000) Soils of Russia: Correlated with the Revised Legend of the FAO Soil Map of the World and World Reference Base for Soil Resources. Research Report, RR-00–13 IIASA, Laxenburg, Austria, pp 112Google Scholar
  133. Stolbovoi V (2006) Soil carbon in the forests of Russia. Mitig Adapt Strat Glob Change 11(1):203–222. http://link.springer.com/article/10.1007%2Fs11027-006-1021-7. Accessed 30 Jan 2015Google Scholar
  134. Stolbovoi V, Fischer G (1997) A new digital georeferenced database of soil degradation in Russia. IIASA Laxenburg, INTERIM REPORT IR-97-084/November. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.689&rep=rep1&type=pdf. Accessed 30 Jan 2015
  135. Strategy (2010) Strategy of the socio-economical development of Siberia until 2020 (Cтpaтeгия coциaльнo-экoнoмичecкoгo paзвития Cибиpи дo 2020 гoдa. Pacпopяжeниe oт 5 июля 2010 г. №1120-p. http://www.sibfo.ru/strategia/strdoc.php#strategia. Accessed 30 Jan 2015
  136. Suleimenov M, Kaskarbayev Z, Akshalov K, Yushchenko N (2014) Conservation agriculture for long-term soil productivity. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 441–454. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_26. Accessed 30 Jan 2015
  137. Suzuki K, Kubota J, Ohata T, Vuglinsky V (2006) Influence of snow ablation and frozen ground on spring runoff generation in the Mogot experimental watershed, southern mountainous Taiga of Eastern Siberia. Nordic Hydrol 37(1):21–29 q IWA PublishingGoogle Scholar
  138. Takakai F, Desyatkin AR, Lopez CML, Fedorov AN, Desyatkin RV, Hatano R (2008) CH4 and N2O emissions from a forest-alas ecosystem in the permafrost Taiga forest region, eastern Siberia, Russia. J Geophys Res: Biogeosci 113(G2). doi: 10.1029/2007JG000521. http://onlinelibrary.wiley.com/doi/10.1029/2007JG000521/abstract. Accessed 30 Jan 2015Google Scholar
  139. Tanasienko AA, Chumbaev AS (2010) Conditions of the formation of ice barriers in eroded chernozems of Western Siberia. Eurasian Soil Sci 43(4):417–426CrossRefGoogle Scholar
  140. Tandelov YuP (2012) Fertility of acid soils on agricultural lands of the Krasnoyarsk Krai (Плoдopoдиe киcлыx пoчв зeмлeдeльчecкoй тeppитopии Кpacнoяpcкoгo кpaя) Кpacнoяpcк 2012 http://tandelov-agro.narod.ru/olderfiles/1/JU.P.Tandelov_Plodorodie_kislyh_po-89447.pdf. Accessed 30 Jan 2015
  141. Tarnocai C, Canadell JG, Schuur, EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23, GB2023. doi: 10.1029/2008GB003327 Google Scholar
  142. Tchebakova NM, Rehfeldt GE, Parfenova EI (2006) Impacts of climate change on the distribution of Larix spp. and Pinus sylvestris. Mitig Adapt Strat Global Change 11(4):861–882. http://link.springer.com/article/10.1007%2Fs11027-005-9019-0. Accessed 30 Jan 2015
  143. Tchebakova NM, Parfenova EI, Lysanova GI, Soja AJ (2011) Agroclimatic potential across central Siberia in an altered twenty-first century. Environ Res Lett 6 (Oct–Dec 2011) 045207. doi: 10.1088/1748-9326/6/4/045207 Google Scholar
  144. Titlyanova AA (2008) Functioning and evolution of biogeocenoses in the Baraba lowland, West Siberia. Contemp Prob Ecol 1(6):629–632. http://link.springer.com/article/10.1134/S1995425508060027. Accessed 30 30Google Scholar
  145. Titlyanova AA, Kudryashova SYa, Yakutin MV, Bulavko GI, Mironycheva-Tokareva NP (2001) The reserves of carbon in vegetative and microbial biomass of siberian ecosystems. Eurasian Soil Sci 34(8):837–849Google Scholar
  146. Trubacheva NV, Rosseeva LP, Belan IA, Osadchaia TS, Kravtsova LA, Kolmakov IuV, Blokhina NP, Pershina LA (2011) Characteristics of common wheat cultivars of West Siberia carrying the wheat-rye 1RS.1BL translocation. Genetika 47(1):18–24 Engl. abstract at http://www.ncbi.nlm.nih.gov/pubmed/21446180. Accessed 30 Jan 2015
  147. UEAA (2006) Union of european academies for science applied to agriculture. Food Nat http://www.euracadagri.com/eng/members/russia.php. Accessed 30 Jan 2015
  148. Urban M, Hese S, Herold M, Pöcking S, Schmullius C (2010) Pan-Arctic land cover mapping and fire assessment for the ESA data user element, PFG Photogrammetrie, Fernerkundung und Geoinformation, Special Issue, PFG 2010 /4, 283–293Google Scholar
  149. Vakhtin NB (1998) Indigenous people of the Russian Far North: land rights and the environment. Polar Geogr 22(2):79–104CrossRefGoogle Scholar
  150. Vaks A, Gutareva OS, Breitenbach SFM, Avirmed E, Mason A, Thomas AL, Osinzev AV, Kononov AM, Henderson GM (2013) Speleothems reveal 500,000-year history of siberian permafrost, Published Online February 21 2013. Science 12 340(6129):183–186. doi: 10.1126/science.1228729 Google Scholar
  151. Van Huylenbroeck G, Vandermeulen V, Mettepenningen E, Verspecht (2007) Multifunctionality of agriculture: a review of definitions, evidence and instruments. Living Rev Landscape Res http://landscaperesearch.livingreviews.org/Articles/lrlr-2007-3/. Accessed 30 Jan 2015
  152. Vasileva A, Moiseenko K (2013) Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data. Atmos Environ 71:115–121Google Scholar
  153. Vasil’evskaya VD, Grigor’ev VY, Pogozhev EY, Pogozhev EA (2012) Procedure for calculation of chemical indicators of ecological danger of tundra soil degradation and their validation (Review). Contemp Prob Ecol 5(5):481–496CrossRefGoogle Scholar
  154. Venevskaia I, Venevsky S, Thomas CD (2013) Projected latitudinal and regional changes in vascular plant diversity through climate change: short-term gains and longer-term losses. Biodiv Conser 22(6–7):1467–1483Google Scholar
  155. Vorobyeva IB (2012) Changes in the Southern Siberian Forest-Steppes. Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Plant and Vegetation vol 6, pp 425–443Google Scholar
  156. Voswinkel J (2014) Das Ziel ist die Weltspitze. http://www.helmholtz.de/artikel/das-ziel-ist-die-weltspitze-2512/. Accessed 30 Jan 2015
  157. Wenkel K-O, Berg M, Mirschel W, Wieland R, Nendel C, Köstner B (2013) LandCaRe DSS: an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. J Environ Manage 127(Supplement):S168–S183CrossRefGoogle Scholar
  158. Wiggering H, Dalchow C, Glemnitz M, Helming K, Müller K, Schultz A, Stachow U, Zander P (2006) Indicators for multifunctional land use: linking socio-economic requirements with landscape potentials. Ecol Ind 6(1):238–249CrossRefGoogle Scholar
  159. WRB (2006) World reference base for soil resources 2006, a framework for international classification, correlation and communication, FAO Rome, World soil resources reports 103, p 145Google Scholar
  160. WRB (2014) World reference base for soil resources 2014, world soil resources report no 106, p 181. ISBN 978-92-5-108369-7, http://www.fao.org/3/a-i3794e.pdf. Accessed 14 Nov 2014
  161. Yablokov A (2014) Academy ‘reform’ is stifling Russian science. Nature 511, 7 (03 July 2014) doi: 10.1038/511007a. http://www.nature.com/news/academy-reform-is-stifling-russian-science-1.15486. Accessed 30 Jan 2015Google Scholar
  162. Yakovleva N (2011) Oil pipeline construction in Eastern Siberia: Implications for indigenous people. Geoforum 42(2011):708–719CrossRefGoogle Scholar
  163. Zakharova EA, Kouraev AV, Rémy F, Zemtsov VA, Sergey N. Kirpotin SN (2014) Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. J Hydrol 512(6):366–378. http://www.sciencedirect.com/science/article/pii/S0022169414001747. Accessed 30 Jan 2015Google Scholar
  164. Zech R, Huang Y, Zech M, Tarozo RA, Zech W (2011) High carbon sequestration in Siberian permafrost loess-paleosols during glacials. Clim Past 7(2):501–509CrossRefGoogle Scholar
  165. Zech W, Schad P, Hintermaier-Erhard G (2014) Böden der Welt. 2nd edit. Springer 2014, p 164. http://www.springer.com/springer+spektrum/geowissenschaften/bodenkunde/book/978-3-642-36574-4. Accessed 30 Jan 2015
  166. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC (1995) Steppe-Tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146(5):765–794CrossRefGoogle Scholar
  167. Zolnikov ID, Glushkova NV, Lyamina VA, Smolentseva EN, Korolyuk AYu, Bezuglova NN, Zinchenko GS, Puzanov AV (2011) Indication of the dynamics of natural-territorial complexes in southern Western Siberia in connection with climate changes. Geogr Nat Res 2:155–160Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF) e.V.MünchebergGermany
  2. 2.Kuban State Agrarian UniversityKrasnodarRussia
  3. 3.Pryanishnikov All-Russian Research Institute of Agrochemistry (VNIIA)MoscowRussia
  4. 4.Siberian Branch, Institute of Soil Science and Agrochemistry (ISSA)Russian Academy of SciencesNovosibirskRussia
  5. 5.Faculty of Agriculture/Landscape ManagementUniversity of Applied SciencesDresdenGermany
  6. 6.Department Soil PhysicsHelmholtz Centre for Environmental Research—UFZ, Lysimeter StationFalkenbergGermany

Personalised recommendations