Skip to main content

Simulating Temperature Impacts on Crop Production Using MONICA

  • Chapter
  • First Online:
Novel Methods for Monitoring and Managing Land and Water Resources in Siberia

Part of the book series: Springer Water ((SPWA))

Abstract

Process-based simulation models that predict crop growth, evapotranspiration, nitrate leaching or other environmental variables are commonly applied to assess their impact on agricultural crop production or the environment. Model inter-comparisons across a wide range of environments suggest that temperature relations are the most crucial for the success of individual models in capturing crop growth and yield formation at a specific site. For Siberia, where the annual temperature amplitude can easily exceed 80 K at some locations, temperature extremes are the most important challenge to the application of agro-ecosystem models. In this chapter, temperature-related algorithms of the dynamic simulation model MONICA are presented, including temperature dependencies of soil organic matter turn-over, plant photosynthesis and respiration, ontogenesis and the impacts of extremely high or low temperatures on crop growth. MONICA was developed to demonstrate the impact of the climate and management on crop yields and environmental variables on the plot scale and in smaller regions in Central Europe. Based on known biophysical processes, MONICA has the potential to assess the impacts of climate change and land management on crop yields, carbon balance and nitrogen efficiency in Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil-crop-atmosphere system model. Environ Mod Software 15:313–330

    Article  Google Scholar 

  • Ad-hoc-AG Boden (2005) Bodenkundliche kartieranleitung. verbesserte und erweiterte Auflage, Hannover 5:438

    Google Scholar 

  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane A, Boote KJ, Thorburn P, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor A, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt T, Ingwersen J, Izaurralde C, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov M, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White J, Williams JR, Wolf J (2013) Quantifying uncertainties in simulating wheat yields under climate change. Nat Clim Change 3:827–832

    Article  CAS  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor A, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt T, Izaurralde C, Jabloun M, Jones CD, Kersebaum KC, Koehler A-K, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov M, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015) Rising heat reduces global wheat production. Nat Clim Change 5(2):143–147

    Article  Google Scholar 

  • Bassu S, Brisson N, Durand JL, Boote KJ, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C, Basso B, Biernath C, Boogard H, Conijn S, Corbeels M, Deryng D, de Sanctis G, Gayler S, Grassini P, Hatfield JL, Hoek SB, Izaurralde C, Jongschaap R, Kemanian AR, Kersebaum KC, Naresh Kumar S, Makowski D, Müller C, Nendel C, Priesack E, Pravia MV, Kim SH, Sau F, Shcherbak I, Tao FL, Teixeira E, Timlin D, Waha K (2014) How do various maize crop models vary in their responses to climate change factors? Glob Change Biol 20(7):2301–2320

    Article  Google Scholar 

  • Bergjord AK, Bonesmo H, Skjelvåg AO (2008) Modelling the course of frost tolerance in winter wheat I. Model development. Eur J Agron 28:321–330

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR, Slingo JM (2005) Simulation of the impact of high temperature stress on the yield of an annual crop. Agric. Forest Meteorol 135: 180–189

    Google Scholar 

  • Challinor AJ, Watson J, Lobell BD, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4:287–291

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6

    Article  Google Scholar 

  • Déqué M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellstrom E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Enke W, Spekat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 8(3):195–207

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. New series. Vol 12B. Physiological plant ecology. II. Water relations and carbon assimilation. Springer, Berlin, pp 549–587

    Google Scholar 

  • Fowler DB, Limin AE, Ritchie JT (1999) Low-temperature tolerance in cereals: Model and genetic interpretation. Crop Sci 39:626–633

    Article  Google Scholar 

  • Fowler DB, Byrns BM, Greer KJ (2014) Overwinter low-temperature responses of cereals: analyses and simulation. Crop Sci 54:2395–2405

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Goudriaan J, van Laar HH (1978) Relations between leaf resistance, CO2 concentration and CO2 assimilation in maize, beans, lalang grass and sunflower. Photosynthetica 12(3):241–249

    CAS  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter-wheat using the Danish simulation-model DAISY. Fert Res 27(2–3):245–259

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1132

    Google Scholar 

  • Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (2007) Modelling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil crop systems. Springer, Stuttgart, pp 1–17

    Chapter  Google Scholar 

  • Kumudini S, Andrade F, Boote KJ, Brown GA, Dzotsi KA, Edmeades GO, Gocken T, Goodwin M, Halter AL, Hatfield JL, Jones JW, Kemanian AR, Kim SH, Kiniri J, Lizaso JI, Nendel C, Nielsen AR, Parent B, Stöckle C, Tardieu F, Timlin DJ, Wallach D, Yang HS, Tollenaar M (2014) Predicting maize phenology: Intercomparison of functions for developmental response to temperature. Agron J 106(6):2087–2097

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations—Has its importance been underestimated. Plant Cell Environ 14(8):729–739

    Article  CAS  Google Scholar 

  • Lucarini V, Calmanti S, Dell’Aquila A, Ruti PM, Speranza A (2007) Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models. Clim Dynam 28(7–8):829–848

    Article  Google Scholar 

  • Martre P, Wallach D, Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, White JW, Wolf J (2015) Multimodel ensembles of wheat growth: Many models are better than one. Glob Change Biol 21(2):911–925

    Google Scholar 

  • Mirschel W, Wenkel KO (2007) Modelling soil-crop interactions with AGROSIM model family. In: Kersebaum K-C, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Springer, Dordrecht, pp 59–73

    Google Scholar 

  • Mitchell RAC, Lawlor DW, Mitchell VJ, Gibbard CL, White EM, Porter JR (1995) Effects of elevated CO2 concentration and increased temperature on winter-wheat—Test of ARCWHEAT1 simulation model. Plant Cell Environ 18(7):736–748

    Article  CAS  Google Scholar 

  • Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679–701

    Google Scholar 

  • Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wegehenkel M, Wenkel K-O, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Mod 222:1614–1625

    Article  CAS  Google Scholar 

  • Nendel C, Kersebaum KC, Mirschel W, Manderscheid R, Weigel HJ, Wenkel K-O (2009) Testing different CO2 response algorithms against a FACE crop rotation experiment. NJAS—Wageningen J Life Sci 57(1):17–25

    Article  Google Scholar 

  • Pirttioja N, Fronzek S, Bindi M, Carter TR, Hoffmann H, Palosuo T, Ruiz Ramos M, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Doro L, Dumont B, Ewert F, Ferrise R, Destain MF, Gaiser T, Hlavinka P, Kersebaum KC, Kollas C, Krzyszczak J, Lorite Torres I, Minet J, Mínguez Tudela I, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruget F, Sanna M, Semenov M, Slawinski C, Stratonovitch P, Supit I, Tao F, Wang E, Wu LH, Rötter RP (2015) Examining wheat yield sensitivity to temperature and precipitation changes in Europe for a large crop model ensemble using impact response surfaces. Clim Res. http://dx.doi.org/10.3354/cr01322

  • Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Env Res Lett 8(2):024018

    Article  Google Scholar 

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32(1):91–102

    Article  Google Scholar 

  • Rötter RP, Palosuo T, Kersebaum KC, Angulo C, Bindi M, Ewert F, Ferrise R, Hravlinka P, Moriondo M, Nendel C, Olesen JE, Patil R, Ruget F, Tacáè J, Trnka M (2012) Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crop Res 133:23–36

    Article  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30(9):1086–1106

    Article  CAS  Google Scholar 

  • van Keulen H, Penning de Vries FWT, Drees EM (1982) A summary model for crop growth. In: Penning de Vries FWT, van Laar HH (eds) Simulation of plant growth and crop production. PUDOC, Wageningen, pp 87–97

    Google Scholar 

  • Wang E, Martre P, Asseng S, Ewert F, Rötter RP, Alderman PD, Zhao Z, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Prasad PVV, Aggarwal PK, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Gayler S, Goldberg R, Hoogenboom G, Hunt LA, Ingwersen J, Izaurralde RC, Jabloun M, Kersebaum KC, Koehler A-K, Lobell D, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane A, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Vignjevic M, Waha K, Wallach D, Wolf J, Zhu Y (2014) Causes for uncertainty in simulating wheat response to temperature. In: Rötter RP, Ewert F (eds) FACCE MACSUR CropM international symposium and workshop “Modelling climate change impacts on crop production for food security”, Oslo, Norway, 10–12 February 2014, Abstract Book 32–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claas Nendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nendel, C. (2016). Simulating Temperature Impacts on Crop Production Using MONICA. In: Mueller, L., Sheudshen, A., Eulenstein, F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_22

Download citation

Publish with us

Policies and ethics