Advertisement

Emerging Measurement Methods for Soil Hydrological Studies

  • Uwe Schindler
  • Lothar Mueller
  • Georg von Unold
  • Wolfgang Durner
  • Johann Fank
Chapter
Part of the Springer Water book series (SPWA)

Abstract

Monitoring and protecting the natural resources of soil and water, and their ecosystems, is intended to ensure the long-term conservation of their functions. To understand the reasons for resource degradation or ecosystem alterations and interactions, knowledge is required of processes and parameters on different scales of landscapes. Soil hydrological studies are an essential part of ecosystem and landscape research. The aim of our study was to develop new research methods and technical equipment to understand and monitor soil hydrological processes. The investigations were carried out on different scales, starting with laboratory and lysimeter measurements, followed by investigations in the field. To measure soil hydrological properties, we developed the Extended Evaporation Method (EEM) and the HYPROP device. In this chapter we report on some innovations in this field. Using new cavitation tensiometers and applying the air-entry pressure of the tensiometer’s porous ceramic cup as the final tension value allowed us to quantify both hydraulic functions close to the wilting point. Additionally, both soil shrinkage dynamics and soil water hysteresis can now be quantified easily and reliably. The experimental setup followed the HYPROP system, which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. Depending on the soil and the evaporation rate, the measurement time varied between 2 and at most 10 days. The simultaneous measurement of multiple soil samples was possible with only one balance. Pedotransfer functions (PDFs) were created on the basis of various measured soil water retention and hydraulic conductivity functions. In the next step, a method for quantifying deep seepage and solute leaching under field conditions was developed, tested and applied at more than 40 soil hydrological field plots in Germany. The method is based on tension and soil water content measurements down to a depth of 3 m at arable and grassland sites and a depth of 5 m at forest sites. These data were used to construct a field water retention curve. This pF curve was fitted, the relative hydraulic conductivity function K(θ) was derived and relative deep seepage rates were calculated based on DARCY’s law. To obtain reliable discharge rates, the K function was matched to the water balance. Lysimeter experiments confirmed the validity and reliability of this soil hydrological field method. It works like a virtual lysimeter on sandy to loamy soils which have a deep water table and a zero flux plane above the measurement depth The EEM and the soil hydrological field method have the potential to improve soil hydrological studies, and water and solute transport monitoring systems could be installed in Eurasia.

Keywords

Soil hydrology Soil hydraulic functions HYPROP Lysimeter Soil hydrological field measurements Deep seepage Leaching Soil water balance 

References

  1. Abbasi F, Javaux M, Vanclooster M, Feyen J (2012) Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189–190:480–490CrossRefGoogle Scholar
  2. Albright WH, Benson CH, Gee GW et al (2004) Field water balance of landfill final covers. J Environ Qual 33(6):2317–2332CrossRefGoogle Scholar
  3. Arya LM (2002) Wind and hot-air methods. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser. 5. SSSA, Madison, WI, pp 916–926Google Scholar
  4. Becher HH (1970) Ein Verfahren zur Messung der ungesättigten Wasserleitfähigkeit. Z. Pflanzenernaehrung u. Bodenkd. 128:1–12CrossRefGoogle Scholar
  5. Benson VS, van Leeuwen JA, Sanchez J, Dohoo IR, Somers GH (2006) Spatial analysis of land use impact on ground water nitrate concentrations. J Environ Qual 35:421–432CrossRefGoogle Scholar
  6. Bertuzzi P, Voltz M (1999) The wind method: a standard laboratory method adopted by the French INRA laboratories. Workshop proceedings: the use of pedotransfer in soil hydrology research, pp 51–53. 10–12 Oct. Orleans, FranceGoogle Scholar
  7. Boels D, van Gils JBM, Veerman GJ, Wit KE (1978) Theory and system of automatic determination of soil moisture characteristics and unsaturated hydraulic conductivities. Soil Sci 126:191–199CrossRefGoogle Scholar
  8. Bryant RB, Gburek WJ, Veith TL, Hively WD (2006) Perspectives on the potential for hydropedology to improve watershed modeling of phosphorus loss. Geoderma 131(3–4):299–307CrossRefGoogle Scholar
  9. Cresswell HP, Green TW, McKenzie N (2008) The adequacy of pressure plate apparatus for determining soil water retention. Soil Sci Soc Am J 55(72):41–49CrossRefGoogle Scholar
  10. Dane JH, Hopmans JW (2002) Pressure plate extractor. In. Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser. 5. SSSA, Madison, WI, pp 688–690Google Scholar
  11. de Rooij GH, Kasteel RTA, Papritz A, Flühler H (2004) Joint distributions of the unsaturated soil hydraulic parameters and their effect on other variates. Vadose Zone J 3:947–955CrossRefGoogle Scholar
  12. Durner W, Iden SC (2011) Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation. Water Resour Res 47:W08526. doi: 10.1029/2011WR010632 CrossRefGoogle Scholar
  13. Fank J, Unold G (2005) Wägbare monolithische Lysimeter unter maschineller Feldbewirtschaftung (Wagna-Austria). Bericht 11. Gumpensteiner Lysimetertagung, pp 55–60Google Scholar
  14. Fujimaki H, Mitsuhiro I (2003) Reevaluation of the multistep outflow method for determining unsaturated hydraulic conductivity. Vadose Zone J 2:409–415CrossRefGoogle Scholar
  15. Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. J Hydrol Process 2:255–266CrossRefGoogle Scholar
  16. Gee GW, Newman BD, Green SR, Meissner R, Rupp H, Zhang ZF, Keller JM, Waugh WJ, van der Velde M, Salazar J (2009) Passive wick fluxmeters: Design considerations and field applications. Water Resour Res 45:1–18Google Scholar
  17. Haines WB (1930) Studies in the physical properties of soil. V. The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith. J. Agric. Res. 20:97–116Google Scholar
  18. Halbertsma J (1996) Wind’s evaporation method, determination of the water retention characteristics and unsaturated hydraulic conductivity of soil samples. Possibilities, advantages and disadvantages. In: Durner W, Halbertsma J, Cislerova M (eds) European workshop on advanced methods to determine hydraulic properties of soils, Thurnau, Germany, June 10–12, 1996, Department of Hydrology, University of Bayreuth, 107 ppGoogle Scholar
  19. Henseler KL, Renger M (1969) Die Bestimmung der Wasserdurchlässigkeit im wasserungesättigten Boden mit der Doppelmembran-Druckapparatur. Z. Pflanzenernähr. Bodenkd. 122:220–228CrossRefGoogle Scholar
  20. Hohenbrink T, Lischeid G (2014) Texture-depending performance of an in situ method assessing deep seepage. J Hydrol 511:61–71CrossRefGoogle Scholar
  21. Hopmans JW, Šimunek J, Romano N, Durner W (2002) Simultaneous determination of water transmission retention properties – Inverse methods. In Dane JH, Topp GC (eds) Methods of soil analysis, Part 4: Physical methods, 4th edn. SSSA Book Series No. 5, American Society of Agronomy Soil Science Society of America, pp 963–1008Google Scholar
  22. Ilnicki P (1982) Hysterese der Wasserspannungskurve in organogenen Böden. Z. Pflanzenernährung und Bodenkd. 145:363–374CrossRefGoogle Scholar
  23. Kastanek F (1995) Kritische Bemerkungen zur Verwendung von Lysimetern. 5. Gumpensteiner Lysimetertagung, “Stofftransport und Stoffbilanz in der ungesättigten Zone” BAL Gumpenstein 25–26 April 1995, BAL Bericht, pp 93–102Google Scholar
  24. Klammler G, Fank J (2014) Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Sci Total Environ 499(2014):448–462CrossRefGoogle Scholar
  25. Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp 687–734Google Scholar
  26. Köhler K, Duijnisveld WH, Böttcher J (2006) Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutr Soil Sci 169:185–195CrossRefGoogle Scholar
  27. Kool B, Parker JC, van Genuchten MTh (1985) Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies. Soil Sci Soc Am J 49:1348–1354CrossRefGoogle Scholar
  28. Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–242CrossRefGoogle Scholar
  29. Likos W, Lu N, Godt J (2014) Hysteresis and uncertainty in soil water-retention curve parameters. J Geotech Geoenviron Eng 140(4):04013050CrossRefGoogle Scholar
  30. Luckner L, van Genuchten MTh, Nielsen DR (1989) A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour Res 25(10):2187–2193CrossRefGoogle Scholar
  31. Malaya C, Screedeep S (2010) A stud on wetting-soil water characteristic curve of a sand soil. In: Proceedings of Indian geotechnical conference, 16–18 Dec 2010, IGS Mumbai Chapter and IIT BombayGoogle Scholar
  32. Maqsoud A, Bussière B, Mbonimpa M (2004) Hysteresis effects on the water retention curve: a comparison between laboratory results and predictive models. 57th Canadian geotechnical conference, 24–26 Oct 2004, Quebec, CanadaGoogle Scholar
  33. Masarik KC, Norman JM, Brye KR, Baker JM (2004) Improvements to measuring water flux in the vadose zone. J Environ Qual 33(3):1152–1158CrossRefGoogle Scholar
  34. Miao Z, Cheplick MJ, Williams MW, Trevisan M, Padovani L, Gennari M, Ferrero A, Vidotto F, Capri E (2003) Simulating pesticide leaching and runoff in rice paddies with the RICEWQ–VADOFT Model. J Environ Qual 32:2189–2199CrossRefGoogle Scholar
  35. Mölders N, Haferkorn U, Döring J, Kramm J (2003) Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part I: description of the model and impact of long-wave radiation, roots, snow, and soil frost. Meteorol Atmos Phys 84(1/2):115–135CrossRefGoogle Scholar
  36. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522Google Scholar
  37. Müller L, Dannowski, Schindler U, Eulenstein F, Meißner R (1996) Gebietsabflüsse aus Agrarlandschaften Nordost- und Mitteldeutschlands. Arch. Acker- Pfl. Boden 40:345–362Google Scholar
  38. Nimmo JR, Perkins KS, Lewis AM (2002) Steady-state centrifuge. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser. 5. SSSA, Madison, WI, pp 903–916Google Scholar
  39. Perkins KS, Nimmo JR, Rose CE, Coupe RH (2011) Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA. J Hydrol 396(1–2):1–11Google Scholar
  40. Peters A, Durner W (2008) Simplified evaporation method for determining soil hydraulic properties. J Hydrol 356:147–162CrossRefGoogle Scholar
  41. Plagge R (1991) Bestimmung der ungesättigten hydraulischen Leitfähigkeit im Boden. Ph.D. thesis, Technical University Berlin, Institute of Ecology, Department Soil Science, 152 ppGoogle Scholar
  42. Reynolds WD, Elrick DE (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci Soc Am J 55:633–639CrossRefGoogle Scholar
  43. Schelle H, Iden SC, Peters A, Durner W (2010) Analysis of the agreement of soil hydraulic properties obtained from multistep-outflow and evaporation method. Vadose Zone J 9. doi: 10.2136/vzj2010.0050
  44. Schelle H, Heise L, Jaenicke K, Durner W (2013) Water retention characteristics of soils over the whole moisture range: a comparison of laboratory methods. Eur J Soil Sci 64:814–821. doi: 10.1111/ejss.12108 CrossRefGoogle Scholar
  45. Schindler U (1980) Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben. Arch. Acker- u. Pflanzenbau u. Bodenkd, Berlin 24, 1, 1–7, 1980Google Scholar
  46. Schindler U (2013) Soil data from Germany (North East and Central Germany). JRC technical reports, European hydrological data inventory (EU-HYDI). doi: 10.2788/5936. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR26053EN.pdf. Accessed 10 Jan 2015
  47. Schindler U, Müller L (1998) Calculating deep seepage from water content and tension measurements in the vadose zone at sandy and loamy soils in north-east Germany. Arch Agronomy Soil Sci 43:233–243CrossRefGoogle Scholar
  48. Schindler U, Müller L (2006) Simplifying the evaporation method for quantifying soil hydraulic properties. J Plant Nutr Soil Sci 169:623–629Google Scholar
  49. Schindler U, Müller L (2010) Data of hydraulic properties of North East and North Central German soils. Earth Syst Sci Data 3:131–142. doi: 10.5194/essdd-3-131-2010 CrossRefGoogle Scholar
  50. Schindler U, Wolff M, Kühn G (2001) Lysimeterstudie zum Einfluss von Düngung und Bewirtschaftung auf die Ertragsbildung, den Wasserhaushalt und die Nährstoffauswaschung im Trockengebiet der Uckermark. Zeitschrift für Pflanzenernährung und Bodenkunde 164:697–703CrossRefGoogle Scholar
  51. Schindler U, Müller L, Eulenstein F, Dannowski R (2008) A long-term hydrological soil study on the effects of soil and land use on deep seepage dynamics in northeast Germany. Arch Agron Soil Sci 54:451–463CrossRefGoogle Scholar
  52. Schindler U, Fank J, Müller L (2009) Quantifizierung der Grundwasserneubildung aus bodenhydrologischen Messungen in situ: Methode—Ergebnisse—Trends. In: Hydrologische Systeme im Wandel : Beiträge zum Tag der Hydrologie am 26/27. März 2009 an der Christian-Albrechts-Universität zu Kiel. DWA, Hennef, pp 45–50Google Scholar
  53. Schindler U, Durner W, von Unold G, Müller L (2010a) Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the range. Soil Sci Soc Am J 74(4):1071–1083CrossRefGoogle Scholar
  54. Schindler U, Durner W, von Unold G, Müller L, Wieland R (2010b) The evaporation method—extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J Plant Nutr Soil Sci 173(4):563–572CrossRefGoogle Scholar
  55. Schindler U, Müller L, Dannowski R, Barkusky D, Francis G (2010c) Long-term measurements to quantify the impact of arable management practices on deep seepage and nitrate leaching. Long-term ecological research: between theory and application. Springer, Dordrecht, pp 243–252CrossRefGoogle Scholar
  56. Schindler U, Müller L, da Veiga M, Zhang Y, Schlindwein SL, Hu C (2012) Comparison of water-retention functions obtained from the extended evaporation method and the standard methods sand/kaolin boxes and pressure plate extractor. J Plant Nutr Soil Sci 174(4):527–534CrossRefGoogle Scholar
  57. Schindler U, Müller L, Dörner J (2013) Neue Methode zur Quantifizierung bodenhydraulischer Kennfunktionen unter Berücksichtigung von Schrumpfung und Quellung. In: Böden—Lebensgrundlage und Verantwortung: Jahrestagung der DBG, 7–12 Sept 2013, Rostock. Deutsche Bodenkundliche Gesellschaft, Oldenburg. http://eprints.dbges.de/1054/1/DBG_Rostock_2013__Schindler.pdf. Accessed 10 Jan 2015
  58. Šimůnek J, Šejna M, van Genuchten MTh (1999) The HYDRUS-2D Software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 2.0.—U.S. Salinity Laboratory, Riverside, CaliforniaGoogle Scholar
  59. Tyner JS, Arya LM, Wright WC (2006) The dual gravimetric hot-air method for measuring soil water diffusivity. Vadose Zone J 5:1281–1286CrossRefGoogle Scholar
  60. UMS (2012a) UMS GmbH Munich, HYPROP©—Laboratory evaporation method for the determination of pF-curves and unsaturated conductivity. http://www.ums-muc.de/en/products/soil_laboratory.html. Accessed 10 Jan 2015
  61. UMS (2012b) UMS GmbH Munich, HYPROP Fit software. http://www.ums-muc.de. Accessed 10 Jan 2015
  62. van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  63. Wendroth O, Ehlers W, Hopmans JW, Kage H, Halbertsma J, Wösten JHM (1993) Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci Soc Am J 57:1436–1443CrossRefGoogle Scholar
  64. Wind GP (1968) Capillary conductivity data estimated by a simple method. In: Proceedings of UNESCO/IASH symposium. Water in the unsaturated zone, Wageningen, The Netherlands, pp 181–191Google Scholar
  65. Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Uwe Schindler
    • 1
  • Lothar Mueller
    • 1
  • Georg von Unold
    • 2
  • Wolfgang Durner
    • 3
  • Johann Fank
    • 4
  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF) e.V.MünchebergGermany
  2. 2.UMS GmbHMunichGermany
  3. 3.Braunschweig Technical UniversityInstitute of GeoecologyBrunswickGermany
  4. 4.Joanneum ResearchGrazAustria

Personalised recommendations