Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

Abstract

The invention of digital computers over half a century ago fascinated scientists with enormous opportunities created by this new research tool, which potentially paralleled the capabilities of brains. Von Neumann has been one of the pioneers of this new digital computing era. While appreciating potential of computers, he warned about a mechanistic parallel between brains and computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing AM (1954) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–94

    Article  MathSciNet  Google Scholar 

  2. Von Neumann J (1958) The computer and the brain. Yale UP, New Haven

    MATH  Google Scholar 

  3. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  4. Newell A (1980) Physical symbol systems. Cogn Sci 4:135–183

    Article  Google Scholar 

  5. Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  6. Harter D, Kozma R (2006) Aperiodic dynamics and the self-organization of cognitive maps in autonomous agents. Int J Intell Syst 21(9):955–972

    Article  MATH  Google Scholar 

  7. Laird JE, Newell A, Rosenbloom PS (1987) SOAR: an architecture for general intelligence. Artif Intell 33:1–64

    Article  Google Scholar 

  8. Anderson JA, Silverstein JW, Ritz SR, Jones RS (1977) Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychol Rev 84:413–451

    Article  Google Scholar 

  9. Merleau-Ponty M (1945) Phnomnologie de la perception. Gallimard, Paris

    Google Scholar 

  10. Dreyfus HL (1992) What computers still can’t do—a critique of artificial reason. MIT Press, Cambridge

    Google Scholar 

  11. Mataric MJ, Brooks RA (1999) Learning a distributed map representation based on navigation behaviors. In: Brooks RA (ed) Cambrian intelligence. MIT Press, Cambridge, pp 37–58

    Google Scholar 

  12. Dreyfus HL (2009) How representational cognitivism failed and is being replaced by body/world coupling. After cognitivism: a reassessment of cognitive science and philosophy. Springer, New York, pp 39–73

    Google Scholar 

  13. Kozma R, Freeman WJ (2009) The KIV model of intentional dynamics and decision making. Neural Netw 22(3):277–285

    Article  Google Scholar 

  14. Clark A (2001) Mindware: an introduction to the philosophy of cognitive science. Oxford University Press, Oxford

    Google Scholar 

  15. Pfeifer R, Scheier C (1999) Understanding intelligence. MIT Press, Cambridge

    Google Scholar 

  16. Rumelhart DE, McClelland JL (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge

    Google Scholar 

  17. Haykin S (1998) Neural networks—a comprehensive foundation. Prentice Hall, New Jersey

    MATH  Google Scholar 

  18. Towell GG, Shavlik JW (1994) Knowledge-based artificial neural networks. Artif Intell 70:119–165

    Article  MATH  Google Scholar 

  19. Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York

    Google Scholar 

  20. Vershure PM, Althaus P (2003) A real-world rational agent: unifying old and new AI. Cogn Sci 27(4):561–590

    Article  Google Scholar 

  21. Crutchfield J (1990) Computation at the onset of chaos. In: Zurek W (ed) Entropy, complexity, and the physics of information. Addison-Wesley, Reading, pp 223–269

    Google Scholar 

  22. Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond. A constructive approach with applications in life sciences. Springer, New York

    Book  MATH  Google Scholar 

  23. Freeman WJ (1975/2004) Mass action in the nervous system. Academic, New York. Electronic version 2004. http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

    Google Scholar 

  24. Kozma R, Freeman WJ (2001) Chaotic resonance: methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 10:2307–2322

    Google Scholar 

  25. Katchalsky A, Rowland V, Huberman B (1974) Dynamic patterns of brain cell assemblies. Neurosci Res Prog Bull 12:1–187

    Google Scholar 

  26. Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862

    Article  Google Scholar 

  27. Freeman WJ, Quian Quiroga R (2013) Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic and electrocorticographic signals. Springer, New York

    Book  Google Scholar 

  28. Freeman WJ (2008) A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Netw 21:257–265

    Article  Google Scholar 

  29. Freeman WJ, Livi R, Obinata M, Vitiello G (2012) Cortical phase transitions, nonequilibrium thermodynamics and time-dependent Ginzburg-Landau equation. Int J Mod Phys B 26(06):1250035

    Article  MATH  Google Scholar 

  30. Freeman WJ, Kozma R, Vitiello G (2012) Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In: The 2012 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  31. Raichle ME (2006) The brain’s dark energy. Science 314:1249–1250

    Article  Google Scholar 

  32. Barrie JM, Freeman WJ, Lenhart M (1996) Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits. J Neurophysiol 76:520–539

    Google Scholar 

  33. Ruiz Y, Pockett S, Freeman WJ, Gonzales E, Guang L (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neurosci Methods 191:110–118

    Article  Google Scholar 

  34. Freeman WJ, Baird B (1987) Relation of olfactory EEG to behavior: spatial analysis. Behav Neurosci 101(3):393

    Article  Google Scholar 

  35. Freeman WJ, Zhai J (2009) Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cogn Neurodyn 3(1):97–103

    Article  Google Scholar 

  36. Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2. Anal Phase Clin Neurophysiol 115:2089–2107

    Article  Google Scholar 

  37. Stam CJ, de Bruin A (2004) Scale-free dynamics of global functional connectivity in the human brain. Hum Brain Mapp 22:97–109

    Article  Google Scholar 

  38. Freeman WJ, Ahlfors SM, Menon V (2009) Combining EEG, MEG and fMRI signals to characterize mesoscopic patterns of brain activity related to cognition. Special Issue (Lorig TS ed). Int J Psychophysiol 73(1):43–52

    Article  Google Scholar 

  39. Kello CT, Brown GD, Ferrer-i-Cancho R, Holden JG, Linkenkaer-Hansen K, Rhodes T, Van Orden GC (2010) Scaling laws in cognitive sciences. Trends Cogn Sci 14(5):223–232

    Article  Google Scholar 

  40. Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  41. Prigogine I (1980) From being to becoming: time and complexity in the physical sciences. WH Freeman, San Francisco

    Google Scholar 

  42. Haken H (1983) Synergetics: an introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  43. Kelso JAS (1995) Dynamic patterns: the self organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  44. Haken H (2002) Brain dynamics: synchronization and activity patterns in pulse-coupled neutral nets with delays and noise. Springer, New York

    MATH  Google Scholar 

  45. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    Google Scholar 

  46. De Arcangelis L (2012) Are dragon-king neuronal avalanches dungeons for self-organized brain activity? Eur Phys J Spec Top 205(1):243–257

    Article  Google Scholar 

  47. Bak P (1996) How nature works the science of self-organized criticality. Springer, New York

    MATH  Google Scholar 

  48. Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Philos Trans R Soc A: Math, Phys Eng Sci 366(1864):329–343

    Article  MathSciNet  MATH  Google Scholar 

  49. Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MA, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci 106(37):15921–15926

    Article  Google Scholar 

  50. Rabinovich MI, Friston KJ, Varona P (eds) (2012) Principles of brain dynamics. MIT Press, Cambridge

    Google Scholar 

  51. Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  Google Scholar 

  52. Bonachela JA, de Franciscis S, Torres JJ, Munoz MA (2010) Self-organization without conservation: are neuronal avalanches generically critical? J Stat Mech: Theor Exp 2010(02):P02015

    Article  Google Scholar 

  53. Erdos P, Renyi A (1959) On random graphs. Publ Math Debr 6:290–297

    MATH  Google Scholar 

  54. Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    MathSciNet  MATH  Google Scholar 

  55. Bollobas B (1985/2001) Random graphs, 2nd edn., Cambridge studies in advanced mathematics. Cambridge UP, Cambridge

    Google Scholar 

  56. Kauffman S (1993) The origins of order–self-organization and selection in evolution. Oxford UP, Oxford

    Google Scholar 

  57. Bollobas B, Riordan O (2006) Percolation. Cambridge UP, Cambridge

    Book  MATH  Google Scholar 

  58. Bollobas B, Kozma R, Miklos D (eds) (2009) Handbook of large-scale random networks., Bolyai society mathematical studies. Springer, New York

    Google Scholar 

  59. Fellemin DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  60. Breakspear M (2004) Dynamic connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2(2):205–225

    Article  Google Scholar 

  61. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. PNAS 103(51):19518–19523

    Article  Google Scholar 

  62. Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci 103(51):19219–19220

    Article  Google Scholar 

  63. Breskin I, Soriano J, Moses E, Tlusty T (2006) Percolation in living neural networks. Phys Rev Lett 97(18):188102

    Article  Google Scholar 

  64. Tlusty T, Eckmann JP (2009) Remarks on bootstrap percolation in metric networks. J Phys A: Math Theor 42(20):205004

    Article  MathSciNet  MATH  Google Scholar 

  65. Eckmann JP, Moses E, Stetter O, Tlusty T, Zbinden C (2010) Leaders of neuronal cultures in a quorum percolation model. Front Comput Neurosci 4(132). doi:10.3389/fncom.2010.00132

  66. Hagmann P, Cammoun L, Gigandet et al (2008) Mapping the structural core of human cerebral cortex. PLOS Biol 6(7):e159, 1–14

    Google Scholar 

  67. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:1–13

    Article  Google Scholar 

  68. Bressler S, Menon V (2010) Large-scale brain networks in cognition:emerging methods and principles. Trends Cogn Sci 14:277–290

    Article  Google Scholar 

  69. Hu S, Wang H, Zhang J, Kong W, Cao Y, Kozma R (2015) Comparison Analysis: granger causality and new causality and their applications to motor imagery. IEEE Trans Neural Netw Learn Syst (in press)

    Google Scholar 

  70. Zamora-Lopez G (2009) Linking structure and function of complex cortical networks. Ph.D. thesis, University of Potsdam, Potsdam

    Google Scholar 

  71. Zamora-Lopez G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5:83

    Article  Google Scholar 

  72. Van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  Google Scholar 

  73. Katchalsky Katzir A (1971) Biological flow structures and their relation to chemodiffusional coupling. Neurosci Res Prog Bull 9:397–413

    Google Scholar 

  74. Kozma R (2003) On the constructive role of noise in stabilizing itinerant trajectories on chaotic dynamical systems. Chaos 11(3):1078–1090

    Article  MathSciNet  MATH  Google Scholar 

  75. Principe JC, Tavares VG, Harris JG, Freeman WJ (2001) Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc IEEE 89:1030–1051

    Article  Google Scholar 

  76. Srinivasa N, Cruz-Albrecht JM (2012) Neuromorphic adaptive plastic scalable electronics: analog learning systems. IEEE Pulse 3(1):51–56

    Article  Google Scholar 

  77. Zhabotinsky AM, Zaikin AN (1973) Autowave processes in a distributed chemical system. J Theor Biol 40:45–61

    Article  Google Scholar 

  78. Von Bertalanffy L (1968) General system theory: foundations, development, application. George Braziller Press, New York

    Google Scholar 

  79. Freeman WJ (1991) The physiology of perception. Sci Am 264(2):78–85

    Article  Google Scholar 

  80. Kozma R (2007) Neuropercolation. Scholarpedia 2(8):1360

    Article  Google Scholar 

  81. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92:367–379

    Article  MathSciNet  MATH  Google Scholar 

  82. Kozma R, Puljic M, Freeman WJ (2012) Thermodynamic model of criticality in the cortex based on EEG/ECoG data. arXiv preprint arXiv:1206.1108

  83. Kozma R, Puljic M (2013) Learning effects in neural oscillators. Cogn Comput 5(2):164–169

    Article  MATH  Google Scholar 

  84. Kozma R, Puljic M (2013) Hierarchical random cellular neural networks for system-level brain-like signal processing. Neural Netw 45:101–110

    Article  MATH  Google Scholar 

  85. Johansen A, Sornette D (2010) Shocks, crashes and bubbles in financial markets. Bruss Econ Rev (Cahiers economiques de Bruxelles) 53(2):201–253

    Google Scholar 

  86. Sornette D, Quillon G (2012) Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur Phys J Spec Top 205(1):1–26

    Article  Google Scholar 

  87. Pisarenko VF, Sornette D (2012) Robust statistical tests of Dragon-Kings beyond power law distributions. Eur Phys J Spec Top 205(1):95–115

    Article  Google Scholar 

  88. Erdi P, Kozma R, Puljic M, Szente J (2013) Neuropercolation and related models of criticalities. In: Contents XXIX-th european meeting of statisticians, Hungary, p 106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Introduction—On the Languages of Brains. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics