Herdan, G.: Quantitative Linguistics. Butterworth Press, Oxford (1964)
Google Scholar
Zipf, G.K.: The Psycho-Biology of Language. Routledge, London (1936). Id., Human Behavior and the Principle of Least Effort. Addison-Wesley Press, Oxford (1949)
Google Scholar
Köhler, R., Altmann, G., Piotrowski, R.G. (eds.): Quantitative Linguistik. Ein internationales Handbuch. Quantitative Linguistics. An international Handbook. (=HSK27). de Gruyter, Berlin (2005)
Google Scholar
Köhler, R., Altmann, G., Grzybek, P. (eds.): Quantitative Linguistics, De Gruyer Mouton. www.degruyter.com/view/serial/35295. Accessed 6 Feb 2015
Glottopedia: the free encyclopedia of linguistics. http://www.glottopedia.org/index.php/Laws. Accessed 17 Dec 2014
Enciclopedia entry: laws in quantitative linguistics. http://lql.uni-trier.de. Accessed 3 Dec 2014
Harald Baayen, R.: Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht (2001)
CrossRef
Google Scholar
Zanette, D.H.: Statistical patterns in written language (2014). arXiv:1412.3336
Barbieri, G., Pachet, F., Roy, P., Degli Esposti, M.: Markov constraints for generating lyrics with style. In: 20th European Conference on Artificial Inteligence – ECAI, IOS Press, Amsterdam (2012)
Google Scholar
Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226 (2004)
CrossRef
Google Scholar
Newman, M.E.J.: Power laws, Pareto distributions and Zipfs law. Contemp. Phys. 46, 323 (2005)
CrossRef
Google Scholar
Mandelbrot, B.: On the theory of word frequencies and on related Markovian models of discourse. In: Structure of Language and Its Mathematical Aspects: Proceedings of Symposia in Applied Mathematics, vol. XII. American Mathematical Society, Providence (1961)
Google Scholar
Altmann, G.: Prolegomena to Menzerath’s law. Glottometrika 2, 1 (1980)
Google Scholar
Cramer, I.: The parameters of the Altmann-Menzerath law. J. Quant. Linguist. 12, 41 (2005)
CrossRef
Google Scholar
Egghe, L.: Untangling Herdan’s law and Heaps’ law : mathematical and informetric arguments. J. Am. Soc. Inf. Sci. Technol. 58, 702 (2007)
CrossRef
Google Scholar
Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425 (1955)
CrossRef
Google Scholar
Li, W.: Zipf’s law everywhere. Glottometrics 5, 14 (2002)
Google Scholar
Zanette, D., Montemurro, M.: Dynamics of text generation with realistic Zipf’s distribution. J. Quant. Linguist. 12, 29 (2005)
CrossRef
Google Scholar
Piantadosi, S.T.: Zipfs word frequency law in natural language: a critical review and future directions. Psychon. Bull. Rev. 21, 1112 (2014)
CrossRef
Google Scholar
Lü, L., Zhang, Z.-K., Zhou, T.: Zipf’s law leads to Heaps’ law: analyzing their relation in finite-size systems. PLOS One 5, e14139 (2010)
CrossRef
Google Scholar
Petersen, A.M., Tenenbaum, J.N., Havlin, S., Stanley, H.E., Perc, M.: Languages cool as they expand: allometric scaling and the decreasing need for new words. Sci. Rep. 2, 943 (2012)
Google Scholar
Gerlach, M., Altmann, E.G.: Stochastic model for the vocabulary growth in natural languages. Phys. Rev. X 3, 021006 (2013)
Google Scholar
Font-Clos, F., Boleda, G., Corral, A.: A scaling law beyond Zipf’s law and its relation to Heaps’ law. New J. Phys. 15(9), 093033 (2013)
CrossRef
Google Scholar
Gerlach, M., Altmann, E.G.: Scaling laws and fluctuations in the statistics of word frequencies. New J. Phys. 16, 113010 (2014)
CrossRef
Google Scholar
Altmann, E.G., Pierrehumbert, J.B., Motter, A.E.: Beyond word frequency: bursts, lulls, and scaling in the temporal distributions of words. Plos One 4, e7678 (2009)
CrossRef
Google Scholar
Corral, A., Ferrer-i-Cancho, R., Boleda, G., Diaz-Guilera, A.: Univeral complex structures in written language. arXiv:0901.2924
Lijffijt, J., Papapetrou, P., Puolamäki, K., Mannila, H.: Analyzing word frequencies in large text corpora using inter-arrival times and bootstrapping. Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 6912, p. 341. Springer, Berlin (2011)
CrossRef
Google Scholar
Damerau, F.J., Mandelbrot, B.: Tests of the degree of word clustering in samples of written English. Linguistics 102, 58–72 (1973)
Google Scholar
Schenkel, A., Zhang, J., Zhang, Y.: Long range correlation in human writings. Fractals 1, 47 (1993)
CrossRef
Google Scholar
Altmann, E.G., Cristadoro, G., Degli Esposti, M.: On the origin of long-range correlations in texts. PNAS 109, 11582 (2012)
CrossRef
Google Scholar
Ebeling, W., Pöschel, T.: Entropy and long-range correlations in literary English. Europhys. Lett. 26, 24 (1994)
Google Scholar
Debowski, L.: On Hilberg’s law and its links with Guiraud’s law. J. Quant. Linguist. 13, 81–109 (2006)
CrossRef
Google Scholar
Piantadosi, S.T., Tily, H., Gibson, E.: Word lengths are optimized for efficient communication. PNAS 108, 3526 (2011)
CrossRef
Google Scholar
Solé, R.V., Corominas-Murtra, B., Valverde, S., Steels, L.: Language networks: their structure, function and evolution. Complexity 15, 20 (2009)
Google Scholar
Choudhury, M., Mukherjee, A.: The structure and dynamics of linguistic networks. Dynamics On and Of Complex Networks, pp. 145–166. Springer, Boston (2009)
Google Scholar
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., Christiansen, M.H.: Networks in cognitive science. Trends Cogn. Sci. 17, 348 (2013)
CrossRef
Google Scholar
Cong, J., Liu, H.: Approaching human language with complex networks. Phys. Life Rev. 11, 598 (2014)
CrossRef
Google Scholar
Constrained writing, in Wikipedia. http://en.wikipedia.org/wiki/Constrained_writing. Accessed 3 Dec 2014
Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551 (1938)
Google Scholar
Main, I.G., Li, L., McCloskey, J., Naylor, M.: Effect of the Sumatran mega-earthquake on the global magnitude cut-off and event rate. Nat. Geosci. 1, 142 (2008)
CrossRef
Google Scholar
Amancio, D.R., Altmann, E.G., Rybski, D., Oliveira Jr., O.N., Costa, L.D.F.: Probing the statistical properties of unknown texts: application to the Voynich manuscript. PLOS One 8, e67310 (2013)
Google Scholar
Febres, G., Jaffé, K., Gershenson, C.: Complexity measurement of natural and artificial languages. Complexity (2014). doi:10.1002/cplx.21529
Google Scholar
Bernhardsson, S., da Rocha, L.E.C., Minnhagen, P.: Size-dependent word frequencies and translational invariance of books. Phys. A 389, 330 (2010)
CrossRef
Google Scholar
Williams, J.R., Bagrow, J.P. Danforth, C.M., Dodds, P.S.: Text mixing shapes the anatomy of rank-frequency distributions: a modern Zipfian mechanics for natural language (2014). arXiv:1409.3870
Baixeries, J., Elvevag, B., Ferrer-i-Cancho, R.: The evolution of the exponent of Zipf’s law in language ontogeny. PLOS One 8, e53227 (2013)
CrossRef
Google Scholar
Jäger, G.: Power laws and other heavy-tailed distribution in linguistic typology. Adv. Compl. Syst. 15, 1150019 (2012)
Google Scholar
Ferrer-i-Cancho, R., Elvevag, B.: Random texts do not exhibit the real Zipf’s law-like rank distribution. PLOS One 5, e9411 (2010)
CrossRef
Google Scholar
Corominas-Murtra, B., Fortuny, J., Solé, R.V.: Emergence of Zipfs law in the evolution of communication. Phys. Rev. E 83, 036115 (2011)
Google Scholar
Ferrer-i-Cancho, R.: Optimization models of natural communication (2014). arXiv:1412.2486
Marsili, M., Mastromatteo, I., Roudi, Y.: On sampling and modeling complex systems. J. Stat. Mech. 2013, P09003 (2013)
CrossRef
Google Scholar
Peterson, J., Dixit, P.D., Dill, K.: A maximum entropy framework for nonexponential distributions. PNAS 110, 20380 (2013)
CrossRef
Google Scholar
Goldstein, M.L., Morris, S.A., Yen, G.G.: Problems with fitting to the power-law distribution. Eur. J. Phys. B 41, 255–258 (2004)
CrossRef
Google Scholar
Bauke, H.: Parameter estimation for power-law distributions by maximum likelihood methods. Eur. J. Phys. B 58, 167–173 (2007)
CrossRef
Google Scholar
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)
CrossRef
Google Scholar
Deluca, A., Corral, A.: Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys. 61, 1351–1394 (2013)
CrossRef
Google Scholar
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)
CrossRef
Google Scholar
Burnham, K.P., Anderson, D.R.: Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach. Spinger, New York (2002)
Google Scholar
Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)
CrossRef
Google Scholar
Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)
CrossRef
Google Scholar
Grünwald, P.D.: Minimum Description Length Principle. MIT Press, Cambridge (2007)
Google Scholar
Jaynes, E.T.: Probability Theory: The Logic of Science. Oxford University Press, Oxford (2003)
CrossRef
Google Scholar
Günther, R., Levitin, L., Schapiro, B., Wagner, P.: Zipf ’s law and the effect of ranking on probability distributions. Int. J. Theor. Phys. 35, 395 (1996)
CrossRef
Google Scholar
Cristelli, M., Batty, M., Pietronero, L.: There is more than a power law in Zipf. Sci. Rep. 2, 812 (2012)
CrossRef
Google Scholar
Stumpf, M.P.H., Porter, M.A.: Critical truths about power laws. Science 335, 665–666 (2012)
CrossRef
Google Scholar
Weiss, M.S.: Modification of the Kolmogorov-Smirnov statistic for use with correlated data. J. Am. Stat. Assoc. 73, 872–875 (1978)
CrossRef
Google Scholar
Chicheportiche, R., Bouchaud, J.-P.: Goodness-of-fit tests with dependent observations. J. Stat. Mech.: Theory Exp. 2011, P09003 (2011)
CrossRef
Google Scholar
Serrano, M.A., Flammini, A., Menczer, F.: Modeling statistical properties of written text. PlOS One 4, e5372 (2009)
CrossRef
Google Scholar
Eisler, Z., Bartos, I., Kertész, J.: Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57, 89–142 (2008)
CrossRef
Google Scholar
Louf, R., Barthelemy, M.: Scaling: lost in the smog. Environ. Plan. B: Plan. Des. 41, 767 (2014)
CrossRef
Google Scholar