Skip to main content

Systemic Approach and Meaningful Complexity in Biology

  • Chapter
  • First Online:
Towards a Post-Bertalanffy Systemics

Part of the book series: Contemporary Systems Thinking ((CST))

Abstract

The understanding of processes of self-organization concerning living systems requires today a systemic and interdisciplinary approach. Taking our moves from recent studies within the framework of an extended theory of complexity, the present work is devoted to consider the phenomena of the coupled processing and transformation of information in biological systems, highlighting the need to identify new measures of complexity (new axiomatic systems) with regard to the study of the mechanisms of natural information transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P. W., & Stein, D. L. (1985). Broken symmetry, emergent properties, dissipative structures, life. Are they related? In F. E. Yates (Ed.), Self-organizing systems: The emergence of order. New York: Plenum Press.

    Google Scholar 

  2. Andrecut, M., Foster, D., Carteret, H., Kauffman, S. A., et al. (2009). Maximal information transfer and behavior diversity in random threshold networks. Journal of Computational Biology, 16(7), 909–916.

    Article  Google Scholar 

  3. Atlan, H. (1987). Self creation of meaning. Physica Scripta, 36, 563–76. doi:10.1088.

    Google Scholar 

  4. Atlan, H. (1998). Intentional self-organization. Emergence and reduction. Towards a physical theory of intentionality. Thesis Eleven, 52, 5–34. doi:10.1177.

    Google Scholar 

  5. Atlan, H. (2000). Self-organizing networks: Weak, strong and intentional, the role of their under-determination. In A. Carsetti (Ed.), Functional models of cognition (pp. 127–143). Dordrecht: Kluwer.

    Google Scholar 

  6. Avery, J. (2003). Information theory and evolution. Singapore: World Scientific.

    Book  Google Scholar 

  7. Bray, D. (1995). Protein molecules as computational elements in living cell. Nature, 376, 307–312. doi:10.1038.

    Google Scholar 

  8. Carsetti, A. (2000). Randomness, information and meaningful complexity: Some remarks about the emergence of biological structures. La Nuova Critica, 36, 47–109.

    Google Scholar 

  9. Carsetti, A. (Ed.). (2009). Causality, meaningful complexity and embodied cognition. Berlin: Springer.

    Google Scholar 

  10. Carsetti, A. (2010). Eigenforms, natural self-organization and morphogenesis. La Nuova Critica, 55–56, 75–99.

    Google Scholar 

  11. Carsetti, A. (2012). The emergence of meaning at the co-evolutionary level. International Journal of Applied Mathematics and Computation, 219, 14–23. doi:10.1016.

    Google Scholar 

  12. Carsetti, A. (2013). Epistemic complexity and knowledge construction. Berlin: Springer.

    Book  Google Scholar 

  13. Di Bernardo, M. (2010). Ordine gratuito, morfogenesi autonoma e complessità semantica. L&PS- Logic & Philosophy of Science, 8(1), 31–82.

    Google Scholar 

  14. Fox Keller, E. (2000). The century of the gene. Cambridge, MA: Harvard University Press.

    Google Scholar 

  15. Fox Keller, E. (2005). Expliquer la vie. Modèles, métaphores, et machines en biologie du développement. Paris: Gallimard.

    Google Scholar 

  16. Freeman, W. J. (2008). A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Networks, 21, 257–265. doi:10.1016.

    Google Scholar 

  17. Freeman, W. J. (2011). Understanding perception through neural “codes”. IEEE Transactions on Biomedical Engineering, 58(7), 1884–1890. doi:10.1109.

    Google Scholar 

  18. Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., et al. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100. doi:10.1038.

    Google Scholar 

  19. Grossberg, S. (2000). Linking mind to brain: The mathematics of biological intelligence. Notices of AMS, 47, 1361–1372.

    Google Scholar 

  20. Grossberg, S. (2007). Towards a unified theory of neocortex: Laminar cortical circuits for vision and cognition. Progress in Brain Research, 165, 79–104.

    Article  Google Scholar 

  21. Hintikka, J. (1970). Surface information and depth information. In J. Hintikka & P. Suppes (Eds.), Information and inference (pp. 298–330). Dordrecht: Reidel.

    Chapter  Google Scholar 

  22. Kauffman, S. A. (1993). The origins of order, self-organization and selection in evolution. New York: Oxford University Press.

    Google Scholar 

  23. Kauffman, S. A. (1995). At home in the universe: The search of the laws of self-organization and complexity. New York: Oxford University Press.

    Google Scholar 

  24. Lakoff, G. (1971). On generative semantics. In D. Steinberg & L. Jakobovits (Eds.), Semantics (pp. 232–296). Cambridge: Cambridge University Press.

    Google Scholar 

  25. Lakoff, G., & Nuñez, R. (2001). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  26. Lefever, R., & Prigogine, I. (1968). Symmetry-breaking instabilities in dissipative systems. Journal of Chemical Physics, 48(4), 1695–1700. doi:10.1063.

    Google Scholar 

  27. Li, M., Wang, I. X., Li, Y., Bruzel, A., Richards, A. L., Toung, J. M., Cheung, V. G., et al. (2011). Widespread RNA and DNA sequence differences in the human transcrip-tome. Science, 333(6038), 53–58. doi:10.1126.

    Google Scholar 

  28. Longo, G., & Montévil, M. (2014). Biological order as a consequence of randomness: Anti-entropy and symmetry changes. In G. Longo & M. Montévil, Perspectives on organisms (pp. 215–248). Heidelberg: Springer.

    Chapter  Google Scholar 

  29. Maynard Smith, J. (2000). The concept of information in biology. Philosophy of Science, 67, 177–194.

    Article  Google Scholar 

  30. Mori, H., & Kuramoto, Y. (2001). Dissipative structures and chaos. Berlin: Springer.

    Google Scholar 

  31. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York: Wiley.

    Google Scholar 

  32. Nicolis, G., & Prigogine, I. (1989). Exploring complexity: An introduction. New York: Freeman.

    Google Scholar 

  33. Prigogine, I. (1980). From being to becoming. San Francisco: W.H. Freeman.

    Google Scholar 

  34. Prigogine, I. (1988). Origin of complexity. In A. C. Fabian (Ed.), Origins: The Darwin college lectures (pp. 69–89). Cambridge: Cambridge University Press.

    Google Scholar 

  35. Prigogine, I., & Stengers, I. (1979). La nouvelle alliance. Métamorphose de la science. Paris: Gallimard.

    Google Scholar 

  36. Prigogine, I., & Stangers, I. (1984). Order out of chaos. New York: Bentham Books.

    Google Scholar 

  37. Talmy, L. (2000). Toward a cognitive semantics. Cambridge: MIT.

    Google Scholar 

  38. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563.

    Article  Google Scholar 

  39. Waddington, C. H. (Ed.). (1970). Towards a theoretical biology. Chicago: Aldine Publishing.

    Google Scholar 

  40. Weber, A., & Varela, F. (2008). Naturalizing teleology: Towards a theory of biological subjects. In L. Illetterati & F. Michelini (Eds.), Purposiveness (pp. 201–219). Frankfurt: Ontos.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Di Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Bernardo, M. (2016). Systemic Approach and Meaningful Complexity in Biology. In: Minati, G., Abram, M., Pessa, E. (eds) Towards a Post-Bertalanffy Systemics. Contemporary Systems Thinking. Springer, Cham. https://doi.org/10.1007/978-3-319-24391-7_14

Download citation

Publish with us

Policies and ethics