Advertisement

The Expanding Earth

  • Helge Kragh
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 54)

Abstract

In the 1960s the once discarded theory of continental drift proposed by Alfred Lothar Wegener was substantially revised and transformed into the modern standard theory of global plate tectonics. For a decade or so the new theory of the Earth and the traditional contraction theory faced competition from a third alternative, the hypothesis of the expanding Earth. As early as 1952 Jordan had suggested Earth expansion on the basis of decreasing gravity, and a few years later the suggestion was taken up by several physicists and earth scientists. Dicke seriously applied his skills in fundamental physics to a broad range of geophysical problems, including a possible increase in the Earth’s radius. The Hungarian geophysicist László Egyed was not only a leading figure in the expansionist alternative but also an advocate of varying gravity as the cause of the growing Earth. Other geologists and geophysicists in favour of the expanding Earth preferred to present their chosen theory in purely empirical terms, without considering the cause of the expansion.

Keywords

Inner Core Plate Tectonic Gravitational Constant Mantle Convection Continental Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. R.L. Armstrong, Control of sea level relative to the continents. Nature 221, 1042–1043 (1969)CrossRefGoogle Scholar
  2. C.H. Barnett, A suggested reconstruction of the land masses of the Earth as a complete crust. Nature 195, 447–448 (1962)CrossRefGoogle Scholar
  3. C.H. Barnett, Oceanic rises in relation to the expanding Earth hypothesis. Nature 221, 1043–1044 (1969)CrossRefGoogle Scholar
  4. C. Barton, Marie Tharp, oceanographic cartographer, and her contributions to the revolution in the earth sciences, in The Earth Inside and Out: Some Major Contributions to Geology in the Twentieth Century, ed. by D.R. Oldroyd (The Geological Society, Bransmill Lane, Bath, 2002), pp. 215–228Google Scholar
  5. A.E. Beck, An expanding Earth with loss of gravitational potential energy. Nature 185, 677–678 (1960)CrossRefGoogle Scholar
  6. A.E. Beck, Energy changes in an expanding Earth, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969), pp. 77–86Google Scholar
  7. R.H. Beyler, Targeting the organism: the scientific and cultural context of Pascual Jordan’s quantum biology, 1932–1947. Isis 87, 248–273 (1996)CrossRefGoogle Scholar
  8. R.H. Beyler, Ernst Pascual Jordan: freedom vs. materialism, in Eminent Lives Twentieth-Century Science & Religion, ed. by N.A. Rupke (Peter Lang, Frankfurt am Main, 2009), pp. 233–252Google Scholar
  9. R.H. Beyler, From Positivism to Organicism: Pascual Jordan’s Interpretations of Modern Physics in Cultural Context. Ph.D. thesis, Harvard University, 1994Google Scholar
  10. H.-J. Binge, Vulkanismus und Intrusionen als Folge der Zeitabhängigkeit von κ in der Jordanschen Kosmologie. Zeitschrift für Naturforschung A 10, 900 (1955)CrossRefGoogle Scholar
  11. H.-J. Binge, Folgerungen der Diracschen Hypothese für die Physik des Erdkörpers. Unpublished dissertation, Hamburg University, 1962Google Scholar
  12. F. Birch, On the possibility of large changes in the Earth’s volume. Phys. Earth Planet. Inter. 1, 141–147 (1968)CrossRefGoogle Scholar
  13. J.T. Blackmore, Is ‘Planck’s principle’ true? Br. J. Philos. Sci. 29, 347–349 (1978)CrossRefGoogle Scholar
  14. D.R. Brill, Review of Jordan’s extended theory of gravitation, in Evidence for Gravitational Theories, ed. by C. Møller (Academic Press, New York, 1962), pp. 50–68Google Scholar
  15. S.G. Brush, A history of modern planetary science, in Nebulous Earth, vol. 1, (Cambridge University Press, Cambridge, 1996a)Google Scholar
  16. S.G. Brush, A history of modern planetary science, in Fruitful Encounters, vol. 3, (Cambridge University Press, Cambridge, 1996c)Google Scholar
  17. K.E. Bullen, The Earth’s Density (Chapman and Hall, London, 1975)CrossRefGoogle Scholar
  18. V. Canuto, The Earth’s radius and the G variation. Nature 290, 739–744 (1981)CrossRefGoogle Scholar
  19. S.W. Carey, Palæomagnetic evidence relevant to a change in the Earth’s radius. Nature 190, 36 (1961)CrossRefGoogle Scholar
  20. S.W. Carey, The expanding Earth—An essay review. Earth-Sci. Rev. 11, 105–143 (1975)CrossRefGoogle Scholar
  21. S.W. Carey, The Expanding Earth (Elsevier, Amsterdam, 1976)Google Scholar
  22. S.W. Carey, Earth expansion and the null universe, in The Expanding Earth, A Symposium, ed. by S. Warren Carey (University of Tasmania, Hobart, TAS, 1983), pp. 367–374Google Scholar
  23. S.W. Carey, A philosophy of the Earth and the universe. Papers and Proceedings of the Royal Society of Tasmania, vol. 112 (1978), http://eprints.utas.edu.au/14186/1/1978_Carey_Philosophy.pdf
  24. B. Carter, Large number coincidences and the anthropic principle in cosmology, in Confrontations of Cosmological Theories with Observational Data, ed. by M.S. Longair (Reidel, Dordrecht, 1973), pp. 291–298Google Scholar
  25. A.M. Clerke, The System of the Stars (Longmans, Green & Co., London, 1890)Google Scholar
  26. P. Couderc, The Expansion of the Universe (Faber and Faber, London, 1952)Google Scholar
  27. K.M. Creer, An expanding Earth? Nature 205, 539–544 (1965a)CrossRefGoogle Scholar
  28. K.M. Creer, Tracking the Earth’s continents. Discovery (Popular Journal of Knowledge) 26(February), 34–40 (1965b)Google Scholar
  29. J. Croll, Discussions on Climate and Cosmology (A. and C. Black, Edinburgh, 1885)Google Scholar
  30. R. Dearnley, Orogenic fold-belts, convection and expansion of the Earth. Nature 206, 1284–1290 (1965)CrossRefzbMATHGoogle Scholar
  31. R. Dearnley, Orogenic fold-belts and a hypothesis of Earth evolution. Phys. Chem. Earth 7, 1–114 (1966)CrossRefGoogle Scholar
  32. R. Dearnley, Crustal tectonic evidence for Earth expansion, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969), pp. 103–110Google Scholar
  33. J.G. Dennis, Fitting the continents. Nature 196, 364 (1962)CrossRefGoogle Scholar
  34. B. DeWitt, Quantum gravity: yesterday and today. Gen. Relativ. Gravit. 41, 413–419 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. R.H. Dicke, Principle of equivalence and the weak interactions. Rev. Mod. Phys. 29, 355–362 (1957a)MathSciNetCrossRefGoogle Scholar
  36. R.H. Dicke, Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363–376 (1957b)MathSciNetCrossRefzbMATHGoogle Scholar
  37. R.H. Dicke, Gravitation—An enigma. Am. Sci. 47, 25–40 (1959a)Google Scholar
  38. R.H. Dicke, Dirac’s cosmology and the dating of meteorites. Nature 183, 170–171 (1959b)CrossRefGoogle Scholar
  39. R.H. Dicke, The Earth and cosmology. Science 138, 653–664 (1962a)CrossRefGoogle Scholar
  40. R.H. Dicke, Implications for cosmology of stellar and galactic evolution rates. Rev. Mod. Phys. 34, 110–122 (1962b)MathSciNetCrossRefGoogle Scholar
  41. R.H. Dicke, The many faces of Mach, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964a), pp. 121–141Google Scholar
  42. R.H. Dicke, The significance for the solar system of time-varying gravitation, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964b), pp. 142–174Google Scholar
  43. R.H. Dicke, Possible effects on the solar system of φ waves if they exist, in Gravitation and Relativity, ed. by H.-Y. Chiu, W.F. Hoffmann (W. A. Benjamin, New York, 1964c), pp. 241–257Google Scholar
  44. R.H. Dicke, The secular acceleration of the Earth’s rotation and cosmology, in The Earth-Moon System, ed. by B.G. Marsden, A.G.W. Cameron (Plenum Press, New York, 1966), pp. 98–164CrossRefGoogle Scholar
  45. R.H. Dicke, Scalar-tensor gravitation and the cosmic fireball. Astrophys. J. 152, 1–24 (1968)CrossRefGoogle Scholar
  46. R.H. Dicke, Average acceleration of the Earth’s rotation and the viscosity of the deep mantle. J. Geophys. Res. 74, 5895–5902 (1969)CrossRefGoogle Scholar
  47. R.H. Dicke, P.J.E. Peebles, Gravitation and space science. Space Sci. Rev. 4, 419–460 (1965)CrossRefGoogle Scholar
  48. R.H. Dicke, P. James, E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)CrossRefGoogle Scholar
  49. H. Dingle, Modern Aristotelianism. Nature 139, 784–786 (1937)CrossRefGoogle Scholar
  50. J.C. Dooley, Is the Earth expanding? Search 4(1–2), 9–15 (1973)Google Scholar
  51. F. Dyson, The fundamental constants and their time variation, in Aspects of Quantum Theory, eds. by A. Salam, E. P. Wigner, (1972), pp. 213–236Google Scholar
  52. L. Egyed, The change of the Earth’s dimensions determined from paleogeographical data. Geofisica Pura e Applicata 33, 42–48 (1956b)CrossRefGoogle Scholar
  53. L. Egyed, A new dynamic conception of the internal constitution of the Earth. Geol. Rundsch. 46, 101–121 (1957)CrossRefGoogle Scholar
  54. L. Egyed, On the origin and constitution of the upper part of the Earth’s mantle. Geol. Rundsch. 50, 251–258 (1960a)CrossRefGoogle Scholar
  55. L. Egyed, Some remarks on continental drift. Geofisica Pura e Applicata 45, 115–116 (1960b)CrossRefGoogle Scholar
  56. L. Egyed, Dirac’s cosmology and the origin of the solar system. Nature 186, 621–622 (1960c)CrossRefGoogle Scholar
  57. L. Egyed, The expanding Earth. Trans. N. Y. Acad. Sci. 23, 424–432 (1961b)CrossRefGoogle Scholar
  58. L. Egyed, The expanding Earth? Nature 197, 1059–1060 (1963)CrossRefzbMATHGoogle Scholar
  59. L. Egyed, Vom Aufbau der Erde, in András Tasnádi-Kubacska, ed. by D. Erde (Urania-Verlag, Leipzig, 1965), pp. 48–103Google Scholar
  60. L. Egyed, The slow expansion hypothesis, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969a), pp. 65–75Google Scholar
  61. L. Egyed, Physik der Festen Erde (Teubner, Leipzig, 1969b)Google Scholar
  62. L. Egyed, L. Stegena, Physical background of a dynamical Earth model. Z. Geophys. 24, 260–267 (1958)Google Scholar
  63. J. Ehlers, E. Schücking, ‘Aber Jordan war der erste’: Zur Erinnerung an Pascual Jordan (1902–1980). Phys. J. 1(11), 71–74 (2002)Google Scholar
  64. W. Eichendorf, M. Reinhardt, How constant are fundamental physical quantities? Zeitschrift für Naturforschung A 32a, 532–537 (1977)Google Scholar
  65. G. Ellis, Editorial note. Gen. Relativ. Gravit. 41, 2179–2189 (2009)CrossRefzbMATHGoogle Scholar
  66. H.T. Engelhardt, A.L. Caplan (eds.), Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology (Cambridge University Press, Cambridge, 1987)Google Scholar
  67. R.W. Fairbridge, Endospheres and interzonal coupling. Ann. N. Y. Acad. Sci. 140, 133–148 (1966)CrossRefGoogle Scholar
  68. D. Falik, Primordial nucleosynthesis and Dirac’s Large Numbers Hypothesis. Astrophys. J. 231, L1 (1979)CrossRefGoogle Scholar
  69. M. Fierz, Über die physikalische Deutung der erweiterten Gravitations theorie P. Jordans. Helvetica Physica Acta 29, 128–134 (1956)MathSciNetzbMATHGoogle Scholar
  70. H.R. Frankel, The continental drift controversy, in Wegener and the Early Debate, vol. 1, (Cambridge University Press, Cambridge, 2012a)Google Scholar
  71. H.R. Frankel, The continental drift controversy, in Paleomagnetism and Confirmation of Drift, vol. 2, (Cambridge University Press, Cambridge, 2012b)Google Scholar
  72. H.R. Frankel, The continental drift controversy, in Introduction of Seafloor Spreading, vol. 3, (Cambridge University Press, Cambridge, 2012c)Google Scholar
  73. H.R. Frankel, The continental drift controversy, in Evolution into Plate Tectonics, vol. 4, (Cambridge University Press, Cambridge, 2012d)Google Scholar
  74. G. Gamow, Any physics tomorrow? Phys. Today 2(1), 16–21 (1949)CrossRefGoogle Scholar
  75. C. Gilbert, Dirac’s cosmology and the general theory of relativity. Mon. Not. R. Astron. Soc. 116, 684–690 (1956)CrossRefGoogle Scholar
  76. C. Gilbert, The general theory of relativity and Newton’s law of gravitation. Nature 179, 270 (1957)CrossRefzbMATHGoogle Scholar
  77. I.S. Glass, Jacob Karl Ernst Halm (1865–1944). Mon. Notes Astron. Soc. South Africa 73, 14–23 (2014)Google Scholar
  78. T. Gold, Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)CrossRefGoogle Scholar
  79. A. Hallam, A Revolution in the Earth Sciences: From Continental Drift to Plate Tectonics (Clarendon Press, Oxford, 1973)Google Scholar
  80. A. Hallam, The unlikelihood of an expanding Earth. Geol. Mag. 121, 653–655 (1984)CrossRefGoogle Scholar
  81. O.H.L. Heckmann, E. Schücking, Andere kosmologische Theorien, in Handbuch der Physik, ed. by S. Flügge, vol. 53 (Springer, Berlin, 1959), pp. 520–357Google Scholar
  82. B.C. Heezen, The deep-sea floor, in Continental Drift, ed. by S.K. Runcorn (Academic Press, New York, 1962), pp. 235–288CrossRefGoogle Scholar
  83. R.W. Hellings et al., Experimental test of the variability of G using Viking Lander Ranging Data. Phys. Rev. Lett. 51, 1609–1612 (1983)CrossRefGoogle Scholar
  84. H. Hönl, Zwei Bemerkungen zur kosmologischen Problem. Ann. Phys. 6, 169–176 (1949)zbMATHGoogle Scholar
  85. H. Hönl, H. Dehnen, Erlaubt die 3° Kelvin-Strahlung Rückschlüsse auf eine konstante oder veränderliche Gravitationszahl? Z. Astrophys. 68, 181–189 (1968)Google Scholar
  86. J. Hospers, S. Van Andel, Palaeomagnetism and the hypothesis of an expanding Earth. Tectonophysics 5, 5–24 (1967)CrossRefGoogle Scholar
  87. J. Hospers, S. Van Andel, Statistical analysis of ancient Earth radii computed from palaeomagnetic data, in Palaeogeophysics, ed. by S. Keith Runcorn (Academic Press, London, 1970), pp. 407–412Google Scholar
  88. F. Hoyle, Remarks on the computation of evolutionary tracks, in Stellar Populations, ed. by J.K. O’Connell (Specola Vaticana, Vatican City, 1958), pp. 223–230Google Scholar
  89. F. Hoyle, Home is Where the Wind Blows: Chapters from a Cosmologist’s Life (University Science Books, Mill Valley, CA, 1994)Google Scholar
  90. E.A. Irving, Paleomagnetism and Its Application to Geological and Geophysical Problems (Wiley, New York, 1964)Google Scholar
  91. H.C. Joksch, Statitische Analyse der hypsometrischen Kurve der Erde. Z. Geophys. 21, 109–112 (1955)Google Scholar
  92. P. Jordan, Über den positivischen Begriff der Wirklichkeit. Die Naturwissenschaften 22, 485–490 (1934)CrossRefGoogle Scholar
  93. P. Jordan, Die physikalischen Weltkonstanten. Die Naturwissenschaften 25, 513–517 (1937)CrossRefzbMATHGoogle Scholar
  94. P. Jordan, Zur empirischen Kosmologie. Die Naturwissenschaften 26, 417–421 (1938)CrossRefzbMATHGoogle Scholar
  95. P. Jordan, Formation of the stars and development of the universe. Nature 164, 637–640 (1949)CrossRefzbMATHGoogle Scholar
  96. P. Jordan, Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie (Vieweg & Sohn, Braunschweig, 1952)zbMATHGoogle Scholar
  97. P. Jordan, Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie, Second revisedth edn. (Vieweg & Sohn, Braunschweig, 1955)Google Scholar
  98. P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121 (1959)CrossRefGoogle Scholar
  99. P. Jordan, Zum Problem der Erdexpansion. Die Naturwissenschaften 48, 417–425 (1961)CrossRefGoogle Scholar
  100. P. Jordan, Geophysical consequences of Dirac’s hypothesis. Rev. Mod. Phys. 34, 596–600 (1962a)CrossRefzbMATHGoogle Scholar
  101. P. Jordan, Empirical confirmation of Dirac’s hypothesis of diminishing gravitation, in Recent Developments in General Relativity (Pergamon Press, Oxford, 1962b), pp. 283–288Google Scholar
  102. P. Jordan, Remarks about Ambarzumian’s conception of pre-stellar matter, in Recent Developments in General Relativity (Pergamon Press, Oxford, 1962c), pp. 289–292Google Scholar
  103. P. Jordan, Der Naturwissenschaftler vor der Religiösen Frage: Abbruch einer Mauer (Gerhard Stalling Verlag, Oldenburg, 1963)Google Scholar
  104. P. Jordan, Four lectures about problems of cosmology, in Cosmological Models, ed. by A. Giáo (Instituto Gulbenkian de Ciêcia, Lisbon, 1964), pp. 101–136Google Scholar
  105. P. Jordan, Die Expansion der Erde: Folgerungen aus der Diracschen Gravitationshypothese (Vieweg & Sohn, Braunschweig, 1966)CrossRefGoogle Scholar
  106. P. Jordan, Über die Wolkenhülle der Venus (Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftlichen Klasse, 1967), pp. 43–53Google Scholar
  107. P. Jordan, Bemerkungen zu der Arbeit von H. Hönl und H. Dehnen. Z. Astrophys. 68, 201–203 (1968)Google Scholar
  108. P. Jordan, On the possibility of avoiding Ramsey’s hypothesis in formulating a theory of Earth expansion, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969a), pp. 55–62Google Scholar
  109. P. Jordan, Albert Einstein (Sein Lebenswerk und die Zukunft der Physik. Stuttgart, Verlag Huber, 1969b)zbMATHGoogle Scholar
  110. P. Jordan, The expanding Earth, in The Physicist’s Conception of Nature, ed. by J. Mehra (Reidel, Dordrecht, 1973), pp. 60–70CrossRefGoogle Scholar
  111. P. Jordan, The theory of a variable ‘constant’ of gravitation. Unpublished essay to the Gravity Research Foundation (1954). http://www.gravityresearchfoundation.org/pdf/awarded/1954/jordan.pdf
  112. P. Jordan, Die Bedeutung der Diracschen Hypothese für die Geophysik. Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftlichen Klasse, 9, 771–795, (1959b)Google Scholar
  113. P. Jordan, Problems of Gravitation. Mimeographed report, Aeronautical Research Laboratory, (1961b)Google Scholar
  114. P. Jordan, J. Ehlers, W. Kundt, Quantitatives zur Diracschen Schwerkraft-Hypothese. Z. Phys. 178, 501–518 (1964)CrossRefzbMATHGoogle Scholar
  115. R.O. Kapp, Towards a Unified Cosmology (Hutchinson & Co., London, 1960)zbMATHGoogle Scholar
  116. R.T. King et al. (eds.), Bibliography of North American Geology, 1950–1959 (United States Government Printing Office, Washington, DC, 1965)Google Scholar
  117. H. Kragh, Cosmology and Controversy: The Historical Development of Two Theories of the Universe (Princeton University Press, Princeton, 1996)Google Scholar
  118. H. Kragh, Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology (Imperial College Press, London, 2004)Google Scholar
  119. H. Kragh, Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology (Oxford University Press, Oxford, 2011)Google Scholar
  120. W. Kundt, Jordan’s ‘excursion’ into geophysics, in Pascual Jordan (1902–1980). Mainzer Symposium zum 100. Geburtstag, (Max Planck Institute for the History of Science, Berlin, 2007), pp. 123–132, Preprint no. 2007. http://www.mpiwg-berlin.mpg.de/en/resources/preprints.html
  121. H.E. Le Grand, Drifting Continents and Shifting Theories (Cambridge University Press, Cambridge, 1988)Google Scholar
  122. L.S. Levitt, The gravitational constant at time zero. Lettere al Nuovo Cimento 29, 23–24 (1980)CrossRefGoogle Scholar
  123. E.A. Lubimova, Theory of thermal state of the Earth’s mantle, in The Earth’s Mantle, ed. by T.F. Gaskell (Academic Press, London, 1967), pp. 231–326Google Scholar
  124. J. MacDougall et al., A comparison of terrestrial and universal expansion. Nature 199, 1080 (1963)CrossRefGoogle Scholar
  125. F. Machado, Geological evidence for a pulsating gravitation. Nature 214, 1317–1318 (1967)CrossRefGoogle Scholar
  126. H.W. Menard, The Ocean of Truth: A Personal History of Global Tectonics (Princeton University Press, Princeton, 1986)CrossRefGoogle Scholar
  127. R.H. Meservey, Topological inconsistency of continental drift on the present-sized Earth. Science 166, 609–611 (1969)CrossRefGoogle Scholar
  128. A. Meskó, In memoriam László Egyed. Palaeogeogr. Palaeoclimatol. Palaeoecol. 9, 73–75 (1971)CrossRefGoogle Scholar
  129. W.J. Morgan, J.O. Stoner, R.E. Dicke, Periodicity of earthquakes and the invariance of the gravitational constant. J. Geophys. Res. 66, 3831–3843 (1961)CrossRefGoogle Scholar
  130. C.T. Murphy, R.H. Dicke, The effects of a decreasing gravitational constant in the interior of the Earth. Proc. Am. Philos. Soc. 108, 224–246 (1964)Google Scholar
  131. M.J. Newman, R.T. Rood, Implications of solar evolution for the Earth’s early atmosphere. Science 198, 1035–1037 (1977)CrossRefGoogle Scholar
  132. R. Nunan, The theory of an expanding Earth and the acceptability of guiding assumptions, in Scrutinizing Science: Empirical Studies of Scientific Change, ed. by A. Donovan, L. Laudan, R. Laudan (Kluwer Academic, Dordrecht, 1988), pp. 289–313CrossRefGoogle Scholar
  133. R. Nunan, Expanding Earth theories, in Sciences of the Earth: An Encyclopedia of Events, People, and Phenomena, ed. by G.A. Good, vol. 2 (Garland Publishing, New York, 1998), pp. 243–250Google Scholar
  134. D. Oldroyd, Thinking about the Earth: A History of Ideas in Geology (Athlone, London, 1996)Google Scholar
  135. G.C. Omer, A nonhomogeneous cosmological model. Astrophy. J. 109, 164–176 (1949)CrossRefGoogle Scholar
  136. E.J. Öpik, Solar variability and palaeoclimatic changes. Ir. Astron. J. 5, 97–109 (1958)Google Scholar
  137. N. Oreskes, The Rejection of Continental Drift: Theory and Method in American Earth Science (Oxford University Press, New York, 1999)Google Scholar
  138. N. Oreskes (ed.), Plate Tectonis: An Insider’s History of the Modern Theory of the Earth (Westview Press, Cambridge, MA, 2001)Google Scholar
  139. P. Pochoda, M. Schwarzschild, Variation of the gravitational constant and the evolution of the sun. Astrophys. J. 139, 587–593 (1964)CrossRefGoogle Scholar
  140. W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., vol. 4, part 1, ed. by K. von Meyenn (Springer, Berlin, 1996)Google Scholar
  141. P.J.E. Peebles, The Eötvös experiment, spatial isotropy, and generally covariant field theories of gravity. Ann. Phys. 20, 240–260 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  142. P.J.E. Peebles, R.H. Dicke, The temperature of meteorites and Dirac’s cosmology and Mach’s principle. J. Geophys. Res. 67, 4063–4070 (1962a)CrossRefGoogle Scholar
  143. P.J.E. Peebles, R.H. Dicke, Significance of spatial isotropy. Phys. Rev. 127, 629–631 (1962c)CrossRefGoogle Scholar
  144. P.J.E. Peebles, D.T. Wilkinson, The primeval fireball. Sci. Am. 216(June), 28–37 (1967)CrossRefGoogle Scholar
  145. W.H. Ramsey, On the nature of the Earth’s core. Geophys. J. Int. 5(suppl. 9), 409–426 (1949)CrossRefGoogle Scholar
  146. G. Ranalli, The expansion-undation hypothesis for geotectonic evolution. Tectonophysics 11, 261–285 (1971)CrossRefGoogle Scholar
  147. P.H. Reitan, The Earth’s volume change and its significance for orogenesis. J. Geol. 68, 678–680 (1960)CrossRefGoogle Scholar
  148. A.E. Ringwood, Changes in solar luminosity and some possible terrestrial consequences. Geochim. Cosmochim. Acta 21, 295–296 (1961)CrossRefGoogle Scholar
  149. I.W. Roxburgh, Dirac’s continuous creation cosmology and the temperature of the Earth. Nature 261, 301–302 (1976)CrossRefGoogle Scholar
  150. J.P. Rozelot, et al. A brief history of the solar oblateness, (2010) https://hal.archives-ouvertes.fr/hal-00519433/
  151. S.K. Runcorn, Corals and the history of the Earth’s rotation. Sea Frontiers 13 (January), 4–12. Reprinted in P. Cloud, (ed.), Adventures in Earth History (W. H. Freeman and Company, San Fransisco, 1967), pp. 190–195Google Scholar
  152. C. Sagan, G. Mullen, Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972)CrossRefGoogle Scholar
  153. G. Scalera, T. Braun, Ott Christoph Hilgenberg in twentieth-century geophysics, in Why Expanding Earth? A Book in Honour of Ott Christoph Hilgenberg, ed. by G. Scalera, K.-H. Jacob (Istituto Nazionale di Geofisica e Vulcanologia, Rome, 2003), pp. 25–41Google Scholar
  154. G. Scalera, K.-H. Jacob (eds.), Why Expanding Earth? A Book in Honour of Ott Christoph Hilgenberg (Istituto Nazionale di Geofisica e Vulcanologia, Rome, 2003)Google Scholar
  155. A.E. Scheidegger, Principles of Geodynamics (Springer, Berlin, 1958)CrossRefzbMATHGoogle Scholar
  156. A.E. Scheidegger, Foundations of Geophysics (Elsevier, Amsterdam, 1976)Google Scholar
  157. A.J. Schneiderov, The exponential law of gravitation and its effects on seismological and tectonic phenomena: a preliminary exposition. Trans. Am. Geophys. Union 3, 61–88 (1943)CrossRefGoogle Scholar
  158. E.L. Schucking, Jordan, Pauli, politics, Brecht, and a variable gravitational constant. Phys. Today 52(October), 26–31 (1999)CrossRefGoogle Scholar
  159. S. Schultz, Morgan to receive National Medal of Science. Princetonian Weekly Bulletin 93(8), 1 and 7 (2003). http://theprince.princeton.edu/princetonperiodicals/cgi-bin/princetonperiodicals
  160. M. Schwarzschild, Structure and Evolution of the Stars (Princeton University Press, Princeton, 1958)Google Scholar
  161. M. Schwarzschild, R. Howard, R. Härm, Inhomogeneous stellar models. V. A solar model with convective envelope and inhomogeneous interior. Astrophys. J. 125, 233–241 (1958)CrossRefGoogle Scholar
  162. C.T. Scrutton, Periodicity in Devonian coral growth. Palaeontology 7, 552–558 (1965)Google Scholar
  163. G. Shahiv, J.N. Bahcall, The effect of the Brans-Dicke cosmology on solar evolution and neutrino fluxes. Astrophys. J. 155, 135–143 (1969)CrossRefGoogle Scholar
  164. J. Steiner, The sequence of geological events and the dynamics of the Milky Way galaxy. J. Geol. Soc. Aust. 14, 99–131 (1967)CrossRefGoogle Scholar
  165. A.D. Stewart, Palaeogravity, in Palaeogeophysics, ed. by S. Keith Runcorn (Academic Press, London, 1970), pp. 413–434Google Scholar
  166. P. Sudiro, The Earth expansion theory and its transition from scientific hypothesis to pseudoscientific belief. Hist. Geo- and Space Sci. 5, 135–148 (2014)CrossRefGoogle Scholar
  167. D. Tarling, M. Tarling, Continental Drift: A Study of the Earth’s Moving Surface (Bell & Sons, London, 1971)Google Scholar
  168. H. Termier, G. Termier, Global paleogeography and Earth expansion, in The Application of Modern Physics to the Earth and Planetary Interiors, ed. by S.K. Runcorn (Wiley Interscience, London, 1969), pp. 87–101Google Scholar
  169. M. Terrall, The Man Who Flattened the Earth: Maupertuis and the Sciences in the Enlightenment (The University of Chicago Press, Chicago, 2002)CrossRefGoogle Scholar
  170. S. Toulmin, Historical inference in science: Geology as a model for cosmology. Monist 47, 142–158 (1962)CrossRefGoogle Scholar
  171. J.-P. Uzan, R. Lehoucq, Les Constantes Fondamentales (Belin, Paris, 2005)Google Scholar
  172. T.C. Van Flandern, Gravity, in Pushing Gravity: New Perspectives on Le Sage’s Theory of Gravitation, ed. by M.R. Edwards (Apeiron, Montreal, 2002), pp. 93–122Google Scholar
  173. D. Van Hilten, Palæomagnetic indications of an increase in the Earth’s radius. Nature 200, 1277–1279 (1963)CrossRefGoogle Scholar
  174. D. Van Hilten, Evaluation of some geotectonic hypotheses by paleomagnetism. Tectonophysics 1, 3–71 (1964)CrossRefGoogle Scholar
  175. K. Vogel, Global models of the expanding Earth, in Frontiers of Fundamental Physics, eds. by M. Barone, F. Selleri (Springer, New York, 1992), pp. 281–286Google Scholar
  176. M.A. Ward, On detecting changes in the Earth’s radius. Geophys. J. Int. 8, 217–225 (1963)CrossRefGoogle Scholar
  177. A. Wegener, The Origin of Continents and Oceans (Dover Publications, New York, 1966)Google Scholar
  178. J.W. Wells, Coral growth and geochronometry. Nature 197, 948–950 (1963)CrossRefGoogle Scholar
  179. J.W. Wells, Paleontological evidence of the rate of the Earth’s rotation, in The Earth-Moon System, ed. by B.G. Marsden, A.G.W. Cameron (Plenum Press, New York, 1966), pp. 70–81CrossRefGoogle Scholar
  180. P.S. Wesson, The position against continental drift. Q. J. R. Astron. Soc. 11, 312–320 (1970)Google Scholar
  181. P.S. Wesson, Objections to continental drift and plate tectonics. J. Geol. 80, 185–197 (1972)CrossRefGoogle Scholar
  182. P.S. Wesson, The implications for geophysics of modern cosmologies in which G is variable. Q. J. R. Astron. Soc. 14, 9–64 (1973)Google Scholar
  183. J.T. Wilson, Geophysics and continental growth. Am. Sci. 47, 1–24 (1959)Google Scholar
  184. J.T. Wilson, Some consequences of expansion of the Earth. Nature 185, 880–882 (1960)CrossRefGoogle Scholar
  185. J.T. Wilson, Continental drift. Sci. Am. 208(April), 86–100 (1963a)CrossRefGoogle Scholar
  186. J.T. Wilson, A possible origin of the Hawaiian Islands. Can. J. Phys. 51, 863–870 (1963b)CrossRefGoogle Scholar
  187. R.M. Wood, Is the Earth getting bigger? New Scientist 81 (8 February), 387 (1979)Google Scholar
  188. S. Yabushita, The Large-Number Hypothesis and the Earth’s expansion, II. Earth Moon Planet 31, 43–47 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helge Kragh
    • 1
  1. 1.Niels Bohr ArchiveNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations