Matrix Metalloproteinase 9 (MMP-9) in Learning and Memory

  • Ewelina KnapskaEmail author
  • Leszek Kaczmarek


Matrix metalloproteinase 9 (MMP-9) is a protein only recently recognized as pivotal for neuronal plasticity, learning, and memory. MMP-9, together with its endogenous inhibitor TIMP-1, compose a perisynaptically operating enzymatic system involved in the dynamic remodeling of the extracellular matrix via cleavage of numerous extracellular substrates, including growth factor precursors, cell surface receptors, and adhesion molecules. In this chapter we present an overview of the data available on MMP-9 involvement in long term potentiation (LTP, a model of neuronal plasticity), learning and memory. The data show that MMP-9 is required for formation of late LTP, although not in all pathways that were studied. Moreover, MMP-9 activation in specific brain structures following learning of different behavioral tasks has been shown. Studies with inhibitors and genetic ablation of MMP-9 demonstrate that it contributes to the mechanisms underlying memory formation. However, its involvement differ between the tasks with respect to the anatomical location and the temporal pattern, suggesting specific role of MMP-9 in learning and memory. In particular, MMP-9 has been found indispensable for appetitive and spatial memory formation, whereas aversive learning was normal in mice missing MMP-9 activity. Notably, hippocampal LTP (implicated in spatial learning) was disturbed by MMP-9 inhibition, similarly to LTP evoked in the basal and central nuclei of the amygdala, supposedly supporting appetitive memory. In contrast, no deficit in lateral amygdala LTP was observed under conditions of impaired MMP-9 activity. Thus, an interesting avenue of research arises and a more detailed investigation of various molecular mechanisms operating within various brain structures is required.


Matrix metaloproteinase 9 (MMP-9) LTP Behavioral Training Appetitive learning Amygdala Hippocampus 



This work was supported by a grant Extrabrain ITN (7th FP EU) to L.K. and National Science Centre Grant DEC-2011/01/D/NZ3/02149 to E.K.


  1. Abraham WC, Otani S (1991) Macromolecules and the maintenance of long-term potentiation. In: Morrell F (ed) Kindling and synaptic plasticity. Birkhauser, Boston, pp 92–109Google Scholar
  2. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727CrossRefPubMedGoogle Scholar
  3. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102CrossRefPubMedGoogle Scholar
  4. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39CrossRefPubMedGoogle Scholar
  5. Bozdagi O, Nagy V, Kwei KT, Huntley GW (2007) In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol 98:334–344CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown TE, Forquer MR, Harding JW, Wright JW, Sorg BA (2008) Increase in matrix metalloproteinase-9 levels in the rat medial prefrontal cortex after cocaine reinstatement of conditioned place preference. Synapse 62:886–889CrossRefPubMedGoogle Scholar
  7. Conant K, Lonskaya I, Szklarczyk A, Krall C, Steiner J, Maguire-Zeiss K, Lim ST (2011) Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5. J Neurochem 118:521–532CrossRefPubMedGoogle Scholar
  8. Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST (2010) Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166:508–521CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11:735–746CrossRefPubMedGoogle Scholar
  10. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, McKeown A, Brittain C, Rujescu D, Giegling I, Turck CW, Holsboer F, Bullmore ET, Middleton L, Merlo-Pich E, Alexander RC, Muglia P (2010) Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 5, e9166CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dziembowska M, Milek J, Janusz A, Rejmak E, Romanowska E, Gorkiewicz T, Tiron A, Bramham CR, Kaczmarek L (2012) Activity-dependent local translation of matrix metalloproteinase-9. J Neurosci 32:14538–14547CrossRefPubMedGoogle Scholar
  12. Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85:2813–2823CrossRefPubMedGoogle Scholar
  13. Fawcett JW (2009) Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132:1417–1418CrossRefPubMedGoogle Scholar
  14. Fragkouli A, Papatheodoropoulos C, Georgopoulos S, Stamatakis A, Stylianopoulou F, Tsilibary EC, Tzinia AK (2012) Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over-expressing MMP9. J Neurochem 121:239–251CrossRefPubMedGoogle Scholar
  15. Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L (2013) Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem 288:20978–20991CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM (2009) High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 158:167–176CrossRefPubMedGoogle Scholar
  17. Gorkiewicz T, Szczuraszek K, Wyrembek P, Michaluk P, Kaczmarek L, Mozrzymas JW (2010) Matrix metalloproteinase-9 reversibly affects the time course of NMDA-induced currents in cultured rat hippocampal neurons. Hippocampus 20:1105–1108CrossRefPubMedGoogle Scholar
  18. Gorkiewicz T, Balcerzyk M, Kaczmarek L, Knapska E (2015) Matrix metalloproteinase (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front Cell Neurosci 9:73CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gundelfinger ED, Frischknecht R, Choquet D, Heine M (2010) Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 31:2156–2165CrossRefPubMedGoogle Scholar
  20. Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L, Dziembowska M (2013) The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci 33:18234–18241CrossRefPubMedGoogle Scholar
  21. Jaworski J, Biedermann IW, Lapinska J, Szklarczyk A, Figiel I, Konopka D, Nowicka D, Filipkowski RK, Hetman M, Kowalczyk A, Kaczmarek L (1999) Neuronal excitation-driven and AP-1-dependent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus. J Biol Chem 274:28106–28112CrossRefPubMedGoogle Scholar
  22. Kaczmarek L (1992) Expression of c-fos and other genes encoding transcription factors in long-term potentiation. Behav Neural Biol 57:263–266CrossRefPubMedGoogle Scholar
  23. Kaczmarek L (1993) Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res 34:377–381CrossRefPubMedGoogle Scholar
  24. Kaczmarek L, Lapinska-Dzwonek J, Szymczak S (2002) Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J 21:6643–6648CrossRefPubMedPubMedCentralGoogle Scholar
  25. Knapska E, Lioudyno V, Kiryk A, Mikosz M, Górkiewicz T, Michaluk P, Gawlak M, Chaturvedi M, Mochol G, Balcerzyk M, Wojcik DK, Wilczynski GM, Kaczmarek L (2013) Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci 33:14591–14600CrossRefPubMedGoogle Scholar
  26. Konopacki FA, Rylski M, Wilczek E, Amborska R, Detka D, Kaczmarek L, Wilczynski GM (2007) Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA. Neuroscience 150:31–39CrossRefPubMedGoogle Scholar
  27. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J, Arnsperger T, Wilczynski G, Merkenschlager M, Theis FJ, Köhr G, Kaczmarek L, Schütz G (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30:14835–14842CrossRefPubMedGoogle Scholar
  28. Krug M, Lössner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13:39–42CrossRefPubMedGoogle Scholar
  29. Kuzniewska B, Rejmak E, Malik AR, Jaworski J, Kaczmarek L, Kalita K (2013) Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. Mol Cell Biol 33:2149–2162CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mash DC, ffrench-Mullen J, Adi N, Qin Y, Buck A, Pablo J (2007) Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One 2, e1187CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 96:1227–1241CrossRefPubMedGoogle Scholar
  32. Michaluk P, Kaczmarek L (2007) Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction. Cell Death Differ 14:1255–1258CrossRefPubMedGoogle Scholar
  33. Michaluk P, Kolodziej L, Mioduszewska B, Wilczynski GM, Dzwonek J, Jaworski J, Gorecki DC, Ottersen OP, Kaczmarek L (2007) Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J Biol Chem 282:16036–16041CrossRefPubMedGoogle Scholar
  34. Michaluk P, Mikasova L, Groc L, Frischknecht R, Choquet D, Kaczmarek L (2009) Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. J Neurosci 29:6007–6012CrossRefPubMedGoogle Scholar
  35. Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M, Zuschratter W, Muller D, Wilczynski GM, Mozrzymas JW, Stewart MG, Kaczmarek L, Wlodarczyk J (2011) Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci 124:3369–3380CrossRefPubMedGoogle Scholar
  36. Mizoguchi H, Yamada K, Mouri A, Niwa M, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T (2007a) Role of matrix metalloproteinase and tissue inhibitor of MMP in methamphetamine-induced behavioral sensitization and reward: implications for dopamine receptor down-regulation and dopamine release. J Neurochem 102:1548–1560CrossRefPubMedGoogle Scholar
  37. Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T (2007b) Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 100:1579–1588PubMedGoogle Scholar
  38. Molnár E (2011) Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 22:506–513CrossRefPubMedGoogle Scholar
  39. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494CrossRefPubMedGoogle Scholar
  41. Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nagy V, Bozdagi O, Huntley GW (2007) The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem 14:655–664CrossRefPubMedPubMedCentralGoogle Scholar
  43. Niedringhaus M, Chen X, Dzakpasu R, Conant K (2012) MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons. PLoS One 7, e42631CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281:752–758CrossRefPubMedGoogle Scholar
  45. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, Wilczynski GM, Sánchez-Capelo A, Mallet J, Kaczmarek L (2007) TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry 62:359–362CrossRefPubMedGoogle Scholar
  46. Otani S, Marshall CJ, Tate WP, Goddard GV, Abraham WC (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28:519–526CrossRefPubMedGoogle Scholar
  47. Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91:1955–1962CrossRefPubMedGoogle Scholar
  48. Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76:396–409CrossRefPubMedPubMedCentralGoogle Scholar
  49. Racine RJ, Milgram NW, Hafner S (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain Res 260:217–231CrossRefPubMedGoogle Scholar
  50. Ramirez S, Tonegawa S, Liu X (2013) Identification and optogenetic manipulation of memory engrams in the hippocampus. Front Behav Neurosci 7:226PubMedGoogle Scholar
  51. Rivera S, Khrestchatisky M, Kaczmarek L, Rosenberg GA, Jaworski DM (2010) Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 30:15337–15357CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rybakowski JK, Skibinska M, Kapelski P, Kaczmarek L, Hauser J (2009a) Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res 109:90–93CrossRefPubMedGoogle Scholar
  53. Rybakowski JK, Skibinska M, Leszczynska-Rodziewicz A, Kaczmarek L, Hauser J (2009b) Matrix metalloproteinase-9 gene and bipolar mood disorder. Neuromolecular Med 11:128–132CrossRefPubMedGoogle Scholar
  54. Rylski M, Amborska R, Zybura K, Michaluk P, Bielinska B, Konopacki FA, Wilczynski GM, Kaczmarek L (2009) JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol Cell Neurosci 40:98–110CrossRefPubMedGoogle Scholar
  55. Samochowiec A, Grzywacz A, Kaczmarek L, Bienkowski P, Samochowiec J, Mierzejewski P, Preuss UW, Grochans E, Ciechanowicz A (2010) Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene in alcohol dependence: family and case control study. Brain Res 1327:103–106CrossRefPubMedGoogle Scholar
  56. Sbai O, Ferhat L, Bernard A, Gueye Y, Ould-Yahoui A, Thiolloy S, Charrat E, Charton G, Tremblay E, Risso J-J, Chauvin J-P, Arsanto J-P, Rivera S, Khrestchatisky M (2008) Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Mol Cell Neurosci 39:549–568CrossRefPubMedGoogle Scholar
  57. Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75–80CrossRefPubMedGoogle Scholar
  58. Sonderegger P, Matsumoto-Miyai K (2014) Activity-controlled proteolytic cleavage at the synapse. Trends Neurosci 37(8):413–423CrossRefPubMedGoogle Scholar
  59. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516CrossRefPubMedPubMedCentralGoogle Scholar
  60. Szepesi Z, Bijata M, Ruszczycki B, Kaczmarek L, Wlodarczyk J (2013) Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS One 8, e63314CrossRefPubMedPubMedCentralGoogle Scholar
  61. Szepesi Z, Hosy E, Ruszczycki B, Bijata M, Pyskaty M, Bikbaev A, Heine M, Choquet D, Kaczmarek L, Wlodarczyk J (2014) Synaptically released matrix metalloproteinase activity in control of structural plasticity and the cell surface distribution of GluA1-AMPA receptors. PLoS One 9, e98274CrossRefPubMedPubMedCentralGoogle Scholar
  62. Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930PubMedGoogle Scholar
  63. Tian L, Stefanidakis M, Ning L, Van Lint P, Nyman-Huttunen H, Libert C, Itohara S, Mishina M, Rauvala H, Gahmberg CG (2007) Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J Cell Biol 178:687–700CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 110:12456–12461CrossRefPubMedPubMedCentralGoogle Scholar
  65. van der Kooj MA, Fantin M, Rejmak E, Grosse J, Zanoletti O, Fournier C, Ganguly K, Kalita K, Kaczmarek L, Sandi C (2014) Role for MMP-9 in stress-induced downregulation of nectin-3 in hippocampal CA1 and associated behavioural alterations. Nat Commun 5:4995CrossRefGoogle Scholar
  66. Vihinen P, Risto A-a, Kähäri V-M (2005) Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 5:203–220CrossRefPubMedGoogle Scholar
  67. Wang X, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci U S A 105:19520–19525CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wiera G, Wójtowicz T, Lebida K, Piotrowska A, Drulis-Fajdasz D, Gomułkiewicz A, Gendosz D, Podhorska-OkołówM CM, Wilczyński G, Dzięgiel P, Kaczmarek L, Mozrzymas JW (2012) Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber-CA3 pathway. Mol Cell Neurosci 50:147–159CrossRefPubMedGoogle Scholar
  69. Wiera G, Wozniak G, Bajor M, Kaczmarek L, Mozrzymas JW (2013) Maintenance of long-term potentiation in hippocampal mossy fiber-CA3 pathway requires fine-tuned MMP-9 proteolytic activity. Hippocampus 6:529–543CrossRefGoogle Scholar
  70. Wilczynski GM et al (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180:1021–1035CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wójtowicz T, Mozrzymas JW (2010) Late phase of long-term potentiation in the mossy fiber-CA3 hippocampal pathway is critically dependent on metalloproteinases activity. Hippocampus 8:917–921Google Scholar
  72. Wójtowicz T, Mozrzymas JW (2014) Matrix metalloprotease activity shapes the magnitude of EPSPs and spike plasticity within the hippocampal CA3 network. Hippocampus 2:135–153CrossRefGoogle Scholar
  73. Wright JW, Masino AJ, Reichert JR, Turner GD, Meighan SE, Meighan PC, Harding JW (2003) Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. Brain Res 963:252–261CrossRefPubMedGoogle Scholar
  74. Wright JW, Murphy ES, Elijah IE, Holtfreter KL, Davis CJ, Olson ML, Muhunthan K, Harding JW (2004) Influence of hippocampectomy on habituation, exploratory behavior, and spatial memory in rats. Brain Res 1023:1–14CrossRefPubMedGoogle Scholar
  75. Wright JW, Meighan SE, Murphy ES, Holtfreter KL, Davis CJ, Olson ML, Benoist CC, Muhunthan K, Harding JW (2006) Habituation of the head-shake response induces changes in brain matrix metalloproteinases-3 (MMP-3) and -9. Behav Brain Res 174:78–85CrossRefPubMedGoogle Scholar
  76. Wright JW, Brown TE, Harding JW (2007) Inhibition of hippocampal matrix metalloproteinase-3 and -9 disrupts spatial memory. Neural Plast 2007:73813CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations