Advertisement

CaMKII Autophosphorylation-Dependent Learning and Memory

  • Fabio A. B. Vigil
  • Karl Peter GieseEmail author
Chapter

Abstract

Calcium/calmodulin-dependent kinase II is the most abundant protein in the post-synaptic density. It has been proposed to play an important role on learning and memory due to its autophosphorylation ability. Once phosphorylated in the right position CaMKII remains active even after the initial stimulus has finished. Although the model seems quite logical and straight forward the function of CaMKII autophosphorylation in learning and memory is still a matter of discussion. While its importance in learning is well established there isn’t still enough data to reach a conclusion on memory. In this chapter we will discuss CaMKII autophosphorylation theory, its importance for LTP, learning, memory and possible relevance in different diseases.

Keywords

Synaptic plasticity LTP Signalling Memory Hippocampus 

References

  1. Abraham WC, Tate WP (1997) Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 52:303–323CrossRefPubMedGoogle Scholar
  2. Alzoubi KH, Aleisa AM, Alkadhi KA (2005) Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII. J Mol Neurosci 27:337–346CrossRefPubMedGoogle Scholar
  3. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805CrossRefPubMedGoogle Scholar
  4. Bejar R, Yasuda R, Krugers H, Hood K, Mayford M (2002) Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J Neurosci 22:5719–5726PubMedGoogle Scholar
  5. Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578CrossRefPubMedGoogle Scholar
  6. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39CrossRefPubMedGoogle Scholar
  7. Bronstein JM, Wasterlain CG, Farber DB (1988) A retinal calmodulin-dependent kinase: calcium/calmodulin-stimulated and -inhibited states. J Neurochem 50:1438–1446CrossRefPubMedGoogle Scholar
  8. Buard I, Coultrap SJ, Freund RK, Lee YS, Dell’Acqua ML, Silva AJ, Bayer KU (2010) CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J Neurosci 30:8214–8220CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cacucci F, Wills TJ, Lever C, Giese KP, O’Keefe J (2007) Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the alpha-isoform of the calcium/calmodulin-dependent protein kinase II. J Neurosci 27:7854–7859CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146:732–745CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5:1158–1170CrossRefPubMedGoogle Scholar
  12. Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998) Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta-mice. Science 279:867–869CrossRefPubMedGoogle Scholar
  13. Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TV, Giese KP (2006) Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 574:805–818CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coultrap SJ, Bayer KU (2014) Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem 289(28):19458–19465CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coultrap SJ, Freund RK, O’Leary H, Sanderson JL, Roche KW, Dell’Acqua ML, Bayer KU (2014) Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Reports 6:431–437CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cox CD, Rex CS, Palmer LC, Babayan AH, Pham DT, Corwin SD, Trieu BH, Gall CM, Lynch G (2014) A map of LTP-related synaptic changes in dorsal hippocampus following unsupervised learning. J Neurosci 34:3033–3041CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230CrossRefPubMedGoogle Scholar
  18. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 96:3269–3274CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ding J, Xi YD, Zhang DD, Zhao X, Liu JM, Li CQ, Han J, Xiao R (2013) Soybean isoflavone ameliorates beta-amyloid 1-42-induced learning and memory deficit in rats by protecting synaptic structure and function. Synapse 67:856–864CrossRefPubMedGoogle Scholar
  20. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284:26655–26665CrossRefPubMedPubMedCentralGoogle Scholar
  21. Easton AC, Lourdusamy A, Loth E, Toro R, Giese KP, Kornhuber J, de Quervain DJ, Papassotiropoulos A, Fernandes C, Muller CP, Schumann G (2013a) CAMK2A polymorphisms predict working memory performance in humans. Mol Psychiatry 18:850–852CrossRefPubMedGoogle Scholar
  22. Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, Lewczuk P, Fernandes C, Desrivieres S, Dawirs RR, Moll GH, Kornhuber J, Frank J, Hoffmann P, Soyka M, Kiefer F, Schumann G, Peter Giese K, Muller CP, Treutlein J, Cichon S, Ridinger M, Mattheisen P, Herms S, Wodarz N, Zill P, Maier W, Mossner R, Gaebel W, Dahmen N, Scherbaum N, Schmal C, Steffens M, Lucae S, Ising M, Muller-Myhsok B, Nothen MM, Mann K, Rietschel M (2013b) AlphaCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–1647CrossRefPubMedPubMedCentralGoogle Scholar
  23. Easton AC, Lucchesi W, Mizuno K, Fernandes C, Schumann G, Giese KP, Muller CP (2013c) AlphaCaMKII autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice. Behav Brain Res 252:72–76CrossRefPubMedGoogle Scholar
  24. Enslen H, Soderling TR (1994) Roles of calmodulin-dependent protein kinases and phosphatase in calcium-dependent transcription of immediate early genes. J Biol Chem 269:20872–20877PubMedGoogle Scholar
  25. Erondu NE, Kennedy MB (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 5:3270–3277PubMedGoogle Scholar
  26. Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536CrossRefPubMedGoogle Scholar
  27. Fujii H, Inoue M, Okuno H, Sano Y, Takemoto-Kimura S, Kitamura K, Kano M, Bito H (2013) Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIalpha and calcineurin. Cell Reports 3:978–987CrossRefPubMedGoogle Scholar
  28. Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867PubMedGoogle Scholar
  29. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem 279:12484–12494CrossRefPubMedGoogle Scholar
  30. Gerges NZ, Alzoubi KH, Alkadhi KA (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 15:480–490CrossRefPubMedGoogle Scholar
  31. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–873CrossRefPubMedGoogle Scholar
  32. Gokcek-Sarac C, Adali O, Jakubowska-Dogru E (2013) Hippocampal levels of ChAT, PKA, phospho-PKA and phospho-CaMKIIalpha but not CaMKIIalpha positively correlate with spatial learning skills in rats. Neurosci Lett 545:112–116CrossRefPubMedGoogle Scholar
  33. Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3:59–70CrossRefPubMedGoogle Scholar
  34. Hardingham N, Glazewski S, Pakhotin P, Mizuno K, Chapman PF, Giese KP, Fox K (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci 23:4428–4436PubMedGoogle Scholar
  35. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81:249–265CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hoelz A, Nairn AC, Kuriyan J (2003) Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol Cell 11:1241–1251CrossRefPubMedGoogle Scholar
  37. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510CrossRefPubMedGoogle Scholar
  38. Irvine EE, Vernon J, Giese KP (2005) AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat Neurosci 8:411–412PubMedGoogle Scholar
  39. Irvine EE, von Hertzen LS, Plattner F, Giese KP (2006) AlphaCaMKII autophosphorylation: a fast track to memory. Trends Neurosci 29:459–465CrossRefPubMedGoogle Scholar
  40. Irvine EE, Danhiez A, Radwanska K, Nassim C, Lucchesi W, Godaux E, Ris L, Giese KP (2011) Properties of contextual memory formed in the absence of alphaCaMKII autophosphorylation. Mol Brain 4:8CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front Behav Neurosci 7:115PubMedPubMedCentralGoogle Scholar
  42. Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 23:10645–10649PubMedGoogle Scholar
  43. Kelly A, Laroche S, Davis S (2003) Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23:5354–5360PubMedGoogle Scholar
  44. Kimura R, Silva AJ, Ohno M (2008) Autophosphorylation of alphaCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn Mem 15:837–843CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lamsa K, Irvine EE, Giese KP, Kullmann DM (2007) NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. J Physiol 584:885–894CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lee JL (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci 11:1264–1266CrossRefPubMedGoogle Scholar
  47. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112:631–643CrossRefPubMedGoogle Scholar
  48. Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843CrossRefPubMedGoogle Scholar
  49. Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Kim H, Kaang BK (2008) Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253–1256CrossRefPubMedGoogle Scholar
  50. Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KP, Giese KP, Rostas JA, Bliss TV (2004) Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 20:3063–3072CrossRefPubMedGoogle Scholar
  52. Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24:353–363CrossRefPubMedGoogle Scholar
  53. Lisman J (1994) The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 17:406–412CrossRefPubMedGoogle Scholar
  54. Lisman J, Goldring M (1988a) Evaluation of a model of long-term memory based on the properties of the Ca2+/calmodulin-dependent protein kinase. J Physiol 83:187–197Google Scholar
  55. Lisman JE, Goldring MA (1988b) Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A 85:5320–5324CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190CrossRefPubMedGoogle Scholar
  57. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182PubMedPubMedCentralGoogle Scholar
  58. Lu HE, MacGillavry HD, Frost NA, Blanpied TA (2014) Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 34:7600–7610CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85:2–8CrossRefPubMedGoogle Scholar
  60. Mayford M, Wang J, Kandel ER, O’Dell TJ (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81:891–904CrossRefPubMedGoogle Scholar
  61. Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256:1199–1202CrossRefPubMedGoogle Scholar
  62. Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 3, e107CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mochizuki H, Ito T, Hidaka H (1993) Purification and characterization of Ca2+/calmodulin-dependent protein kinase V from rat cerebrum. J Biol Chem 268:9143–9147PubMedGoogle Scholar
  64. Need AC, Giese KP (2003) Handling and environmental enrichment do not rescue learning and memory impairments in alphaCamKII(T286A) mutant mice. Genes Brain Behav 2:132–139CrossRefPubMedGoogle Scholar
  65. Nogami T, Beppu H, Tokoro T, Moriguchi S, Shioda N, Fukunaga K, Ohtsuka T, Ishii Y, Sasahara M, Shimada Y, Nishijo H, Li E, Kitajima I (2011) Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice. Hippocampus 21:678–687CrossRefPubMedGoogle Scholar
  66. Ohno M, Frankland PW, Chen AP, Costa RM, Silva AJ (2001) Inducible, pharmacogenetic approaches to the study of learning and memory. Nat Neurosci 4:1238–1243CrossRefPubMedGoogle Scholar
  67. Ohno M, Tseng W, Silva AJ, Disterhoft JF (2005) Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice. Learn Mem 12:211–215CrossRefPubMedGoogle Scholar
  68. Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 24:357–366CrossRefGoogle Scholar
  69. Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67:239–252CrossRefPubMedGoogle Scholar
  70. Pattinson D, Baccei M, Karadottir R, Torsney C, Moss A, McCutcheon J, Giese KP, Fitzgerald M (2006) Aberrant dendritic branching and sensory inputs in the superficial dorsal horn of mice lacking CaMKIIalpha autophosphorylation. Mol Cell Neurosci 33:88–95CrossRefPubMedGoogle Scholar
  71. Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE, Maunganidze NS, Pyza EM, Ris L, Szymanska M, Lipinski M, Kaczmarek L, Stewart MG, Giese KP (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108:18471–18475CrossRefPubMedPubMedCentralGoogle Scholar
  72. Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RG (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989CrossRefPubMedGoogle Scholar
  73. Reese LC, Laezza F, Woltjer R, Taglialatela G (2011) Dysregulated phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. J Neurochem 119:791–804CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123:849–860CrossRefPubMedGoogle Scholar
  75. Sametsky EA, Disterhoft JF, Ohno M (2009) Autophosphorylation of alphaCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation. Neurobiol Learn Mem 92:120–123CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sanderson DJ, Good MA, Seeburg PH, Sprengel R, Rawlins JN, Bannerman DM (2008) The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Prog Brain Res 169:159–178CrossRefPubMedGoogle Scholar
  77. Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6:10CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166CrossRefPubMedGoogle Scholar
  79. Shioda N, Beppu H, Fukuda T, Li E, Kitajima I, Fukunaga K (2011) Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J Neurosci 31:346–358CrossRefPubMedGoogle Scholar
  80. Thein S, Tao-Cheng JH, Li Y, Bayer KU, Reese TS, Dosemeci A (2014) CaMKII mediates recruitment and activation of the deubiquitinase CYLD at the postsynaptic density. PLoS One 9, e91312CrossRefPubMedPubMedCentralGoogle Scholar
  81. Thiagarajan TC, Piedras-Renteria ES, Tsien RW (2002) Alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36:1103–1114CrossRefPubMedGoogle Scholar
  82. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–277CrossRefPubMedGoogle Scholar
  83. van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila FR, Jiang YH, Elgersma Y, Weeber EJ (2007) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10:280–282CrossRefPubMedGoogle Scholar
  84. von Hertzen LS, Giese KP (2005) Alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation is required for memory consolidation-specific transcription. Neuroreport 16:1411–1414CrossRefGoogle Scholar
  85. Wang CC, Held RG, Hall BJ (2013) SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks. PLoS One 8, e83941CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wu J, Rowan MJ, Anwyl R (2006) Long-term potentiation is mediated by multiple kinase cascades involving CaMKII or either PKA or p42/44 MAPK in the adult rat dentate gyrus in vitro. J Neurophysiol 95:3519–3527CrossRefPubMedGoogle Scholar
  88. Xiong Y, Zhou H, Zhang L (2014) Influences of hyperthermia-induced seizures on learning, memory and phosphorylative state of CaMKIIalpha in rat hippocampus. Brain Res 1557:190–200CrossRefPubMedGoogle Scholar
  89. Yabuki Y, Shioda N, Maeda T, Hiraide S, Togashi H, Fukunaga K (2014) Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. Brain Res 1557:90–100CrossRefPubMedGoogle Scholar
  90. Yang Y, Tao-Cheng JH, Bayer KU, Reese TS, Dosemeci A (2013) CaMKII-mediated phosphorylation regulates distributions of Syngap-alpha1 and -alpha2 at the postsynaptic density. PLoS One 8, e71795CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16CrossRefPubMedGoogle Scholar
  92. Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21:823–831CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for the Cellular Basis of BehaviourInstitute of Psychiatry, King’s College LondonLondonUK

Personalised recommendations