Advertisement

CaMKII: A Master Functional and Structural Molecule in Synaptic Plasticity and Memory

  • Magdalena SanhuezaEmail author
  • German Fernandez
Chapter

Abstract

Learning and memory relies, at least in part, on activity-dependent synaptic plasticity. A major plasticity model at glutamatergic synapses is NMDA-receptor (NMDAR)-dependent long-term potentiation (LTP). Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) is critical for LTP and several forms of learning. It is a major component of post-synaptic densities and dendritic spines. Kinase interactions with key proteins in these specializations are differentially modulated by activity and dynamically regulate holoenzyme activity. During LTP CaMKII is activated, autophosphorylated and persistently translocated to synapses through NMDAR binding. Pharmacological or genetic interference with these processes impair LTP and learning. CaMKII may cause potentiation by synaptic recruitment of AMPA-type receptors (AMPARs) through regulation of receptor binding to scaffolding proteins. Additionally, CaMKII-dependent phosphorylation increases AMPAR conductance. Interestingly, CaMKII is also involved in metaplasticity, as it can regulate the sign of synaptic modification (potentiation or depression). The advent of high-resolution optical techniques has allowed inspection of CaMKII localization and activity in spine microdomains, providing new insights on holoenzyme multifaceted involvement in activity-dependent functional and structural changes. Finally, evidence suggests a role of CaMKII interaction with NMDARs in the maintenance of synaptic strength and spine stability. Thus, CaMKII emerges as a critical and complex controller of synaptic function and information storage, playing both enzymatic and structural roles.

Keywords

CaMKII Synaptic plasticity NMDA-receptor Dendritic spines CaMKIIN 

References

  1. Anderson P, Morris R, Amaral D, Bliss T, O’Keefe J (2007) The hippocampus book. Oxford University Press, OxfordGoogle Scholar
  2. Araki Y, Zeng M, Zhang M, Huganir RL (2015) Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:173–189PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asrican B, Lisman J, Otmakhov N (2007) Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II. J Neurosci 27:14007–14011PubMedCrossRefGoogle Scholar
  4. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48:289–301PubMedCrossRefGoogle Scholar
  5. Bats C, Groc L, Choquet D (2007) The interaction between stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53:719–734PubMedCrossRefGoogle Scholar
  6. Bayer KU, Schulman H (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289:917–923PubMedCrossRefGoogle Scholar
  7. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805PubMedCrossRefGoogle Scholar
  8. Bayer KU, LeBel E, McDonald GL, O’Leary H, Schulman H, De Koninck P (2006) Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 26:1164–1174PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borgesius NZ, van Woerden GM, Buitendijk GHS, Keijzer N, Jaarsma D, Hoogenraad CC, Elgersma Y (2011) βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses. J Neurosci 31:10141–10148PubMedCrossRefGoogle Scholar
  10. Chang BH, Mukherji S, Soderling TR (1998) Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A 95:10890–10895PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chang BH, Mukherji S, Soderling TR (2001) Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience 102:767–777PubMedCrossRefGoogle Scholar
  12. Chao LH, Pellicena P, Deindl S, Barclay LA, Schulman H, Kuriyan J (2010) Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nat Struct Mol Biol 17:264–272PubMedPubMedCentralCrossRefGoogle Scholar
  13. Choquet D (2010) Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur J Neurosci 32:250–260PubMedCrossRefGoogle Scholar
  14. Colgan LA, Yasuda R (2014) Plasticity of dendritic spines: subcompartmentalization of signaling. Annu Rev Physiol 76:365–385PubMedCrossRefGoogle Scholar
  15. Coultrap SJ, Buard I, Kulbe JR, Dell’Acqua ML, Bayer KU (2010) CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin. J Biol Chem 285:17930–17937PubMedPubMedCentralCrossRefGoogle Scholar
  16. Coultrap SJ, Freund RK, O’Leary H, Sanderson JL, Roche KW, Dell’Acqua ML, Bayer KU (2014) Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep 6:431–437PubMedPubMedCentralCrossRefGoogle Scholar
  17. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230PubMedCrossRefGoogle Scholar
  18. Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113PubMedCrossRefGoogle Scholar
  19. Díaz E (2010) Regulation of AMPA receptors by transmembrane accessory proteins. Eur J Neurosci 32:261–268PubMedCrossRefGoogle Scholar
  20. Ding JD, Kennedy MB, Weinberg RJ (2013) Subcellular organization of CaMKII in rat hippocampal pyramidal neurons. J Comp Neurol 521:3570–3583PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, Reese TS (2001) Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A 98:10428–10432PubMedPubMedCentralCrossRefGoogle Scholar
  22. Elgersma Y, Fedorov NB, Ikonen S, Choi ES, Elgersma M, Carvalho OM, Giese KP, Silva AJ (2002) Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron 36:493–505PubMedCrossRefGoogle Scholar
  23. Feng B, Raghavachari S, Lisman J (2011) Quantitative estimates of the cytoplasmic, PSD, and NMDAR-bound pools of CaMKII in dendritic spines. Brain Res 1419:46–52PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fera A, Dosemeci A, Sousa AA, Yang C, Leapman RD, Reese TS (2012) Direct visualization of CaMKII at postsynaptic densities by electron microscopy tomography. J Comp Neurol 520:4218–4225PubMedCrossRefGoogle Scholar
  25. Fink CC, Bayer KU, Myers JW, Ferrell JE, Schulman H, Meyer T (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39:283–297PubMedCrossRefGoogle Scholar
  26. Fujii H, Inoue M, Okuno H, Sano Y, Takemoto-Kimura S, Kitamura K, Kano M, Bito H (2013) Nonlinear Decoding and Asymmetric Representation of Neuronal Input Information by CaMKIIα and Calcineurin. Cell Rep 3:978–987PubMedCrossRefGoogle Scholar
  27. Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867PubMedGoogle Scholar
  28. Fukunaga K, Muller D, Miyamoto E (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long term potentiation. J Biol Chem 270:6119–6124PubMedCrossRefGoogle Scholar
  29. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–873PubMedCrossRefGoogle Scholar
  30. Gouet C, Aburto B, Vergara C, Sanhueza M (2012) On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII. PLoS One 7, e49293PubMedPubMedCentralCrossRefGoogle Scholar
  31. Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll R (2013) LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493:495–500PubMedCrossRefGoogle Scholar
  32. Gustin RM, Shonesy BC, Robinson SL, Rentz TJ, Baucum AJ, Jalan-Sakrikar N, Winder DG, Stanwood GD, Colbran RJ (2011) Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Mol Cell Neurosci 47:286–292PubMedPubMedCentralCrossRefGoogle Scholar
  33. Guzowski JF (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12:86–104PubMedCrossRefGoogle Scholar
  34. Halt AR, Dallapiazza RF, Zhou Y, Stein IS, Qian H, Juntti S, Wojcik S, Brose N, Silva AJ, Hell JW (2012) CaMKII binding to GluN2B is critical during memory consolidation. EMBO J 31:1203–1216PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hanson PI, Schulman H (1992) Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 61:559–601PubMedCrossRefGoogle Scholar
  36. Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997PubMedGoogle Scholar
  37. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267PubMedCrossRefGoogle Scholar
  38. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  39. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81:249–265PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hill TC, Zito K (2013) LTP-induced long-term stabilization of individual nascent dendritic spines. J Neurosci 33:678–686PubMedCrossRefGoogle Scholar
  41. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729PubMedCrossRefGoogle Scholar
  42. Hosokawa T, Mitsushima D, Hosokawa T, Mitsushima D, Kaneko R, Hayashi Y (2015) Stoichiometry and phosphoisotypes of hippocampal report stoichiometry and phosphoisotypes of hippocampal AMPA-type glutamate receptor phosphorylation. Neuron 85(1):60–67PubMedCrossRefGoogle Scholar
  43. Huang Z (2009) Molecular and cellular neuroscience molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci 42:11–22PubMedCrossRefGoogle Scholar
  44. Hudmon A, Lebel E, Roy H, Sik A, Schulman H, Waxham MN, De Koninck P (2005) A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. J Neurosci 25:6971–6983PubMedCrossRefGoogle Scholar
  45. Inamura M, Itakura M, Okamoto H, Hoka S, Mizoguchi A, Fukazawa Y, Shigemoto R, Yamamori S, Takahashi M (2006) Differential localization and regulation of stargazin-like protein, gamma-8 and stargazin in the plasma membrane of hippocampal and cortical neurons. Neurosci Res 55:45–53PubMedCrossRefGoogle Scholar
  46. Kennedy MB, Bennett MK, Erondu NE (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A 80:7357–7361PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, Huganir R, Traynelis SF (2011) Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14:727–735PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KPSJ, Giese KP, Rostas JAP, Bliss TVP (2004) Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 20:3063–3072PubMedCrossRefGoogle Scholar
  50. Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 96:3239–3244PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lepicard EM, Mizuno K, Antunes-Martins A, von Hertzen LSJ, Giese KP (2006) An endogenous inhibitor of calcium/calmodulin-dependent kinase II is up-regulated during consolidation of fear memory. Eur J Neurosci 23:3063–3070PubMedCrossRefGoogle Scholar
  52. Ling K-H, Hewitt CA, Beissbarth T, Hyde L, Cheah P-S, Smyth GK, Tan S-S, Hahn CN, Thomas T, Thomas PQ et al (2011) Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb Cortex 21:683–697PubMedCrossRefGoogle Scholar
  53. Lisman J (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A 82:3055–3057PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lisman JE, Goldring MA (1988) Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A 85:5320–5324PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190PubMedCrossRefGoogle Scholar
  56. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182PubMedPubMedCentralGoogle Scholar
  57. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A 92:11175–11179PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lledo PM, Zhang X, Südhof TC, Malenka RC, Nicoll RA (1998) Postsynaptic membrane fusion and long-term potentiation. Science 279:399–403PubMedCrossRefGoogle Scholar
  59. Lu HE, MacGillavry HD, Frost NA, Blanpied TA (2014) Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 34:7600–7610PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85:2–8PubMedCrossRefGoogle Scholar
  61. MacGillavry H, Song Y, Raghavachari S, Blanpied T (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78:615–622PubMedPubMedCentralCrossRefGoogle Scholar
  62. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–390PubMedPubMedCentralCrossRefGoogle Scholar
  63. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  64. Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866PubMedCrossRefGoogle Scholar
  65. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092PubMedPubMedCentralCrossRefGoogle Scholar
  66. Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mayford M, Wang J, Kandel ER, O’Dell TJ (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81:891–904PubMedCrossRefGoogle Scholar
  68. Meyer T, Shen K (2000) In and out of the postsynaptic region: signalling proteins on the move. Trends Cell Biol 10:238–244PubMedCrossRefGoogle Scholar
  69. Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256:1199–1202PubMedCrossRefGoogle Scholar
  70. Miller SG, Kennedy MB (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44:861–870PubMedCrossRefGoogle Scholar
  71. Mukherji S, Soderling TR (1994) Regulation of Ca2+/calmodulin-dependent protein kinase II by inter- and intrasubunit-catalyzed autophosphorylations. J Biol Chem 269:13744–13747PubMedGoogle Scholar
  72. Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35:135–143PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348–352PubMedPubMedCentralCrossRefGoogle Scholar
  74. Newpher TM, Ehlers MD (2008) Glutamate receptor dynamics in dendritic microdomains. Neuron 58:472–497PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115–118PubMedCrossRefGoogle Scholar
  76. Nicoll RA, Roche KW (2013) Long-term potentiation: peeling the onion. Neuropharmacology 74:18–22PubMedPubMedCentralCrossRefGoogle Scholar
  77. Okamoto K-I, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112PubMedCrossRefGoogle Scholar
  78. Okamoto K-I, Narayanan R, Lee SH, Murata K, Hayashi Y (2007) The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci U S A 104:6418–6423PubMedPubMedCentralCrossRefGoogle Scholar
  79. Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 24:357–366CrossRefGoogle Scholar
  80. Opazo P, Choquet D (2011) A three-step model for the synaptic recruitment of AMPA receptors. Mol Cell Neurosci 46:1–8PubMedCrossRefGoogle Scholar
  81. Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67:239–252PubMedCrossRefGoogle Scholar
  82. Opazo P, Sainlos M, Choquet D (2011) Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol 22:453–460PubMedCrossRefGoogle Scholar
  83. Otmakhov N, Tao-Cheng JJ-H, Carpenter S, Asrican B, Dosemeci A, Reese TS, Lisman J (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J Neurosci 24:9324–9331PubMedCrossRefGoogle Scholar
  84. Otmakhov N, Regmi S, Lisman JE (2015) Fast decay of CaMKII FRET sensor signal in spines after LTP induction is not due to its dephosphorylation. PLoS One 10, e0130457PubMedPubMedCentralCrossRefGoogle Scholar
  85. Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci U S A 107:15951–15956PubMedPubMedCentralCrossRefGoogle Scholar
  86. Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS (2003) Distribution of postsynaptic density (PSD)-95 and Ca. Interface 23:11270–11278Google Scholar
  87. Petralia RS, Sans N, Wang YX, Wenthold RJ (2005) Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29:436–452PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pettit DL, Perlman S, Malinow R (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266:1881–1885PubMedCrossRefGoogle Scholar
  89. Pi HJ, Otmakhov N, Lemelin D, De Koninck P, Lisman J (2010) Autonomous CaMKII can promote either long-term potentiation or long-term depression, depending on the state of T305/T306 phosphorylation. J Neurosci 30:8704–8709PubMedPubMedCentralCrossRefGoogle Scholar
  90. Poncer JC, Esteban JA, Malinow R (2002) Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J Neurosci 22:4406–4411PubMedGoogle Scholar
  91. Radwańska K, Tudor-Jones AA, Mizuno K, Pereira GS, Lucchesi W, Alfano I, Łach A, Kaczmarek L, Knapp S, Giese KP (2010) Differential regulation of CaMKII inhibitor beta protein expression after exposure to a novel context and during contextual fear memory formation. Genes Brain Behav 9:648–657PubMedGoogle Scholar
  92. Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK, Colbran RJ (2005) Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J Biol Chem 280:35329–35336PubMedCrossRefGoogle Scholar
  93. Rotenberg A, Mayford M, Hawkins RD, Kandel ER, Muller RU (1996) Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87:1351–1361PubMedCrossRefGoogle Scholar
  94. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88PubMedCrossRefGoogle Scholar
  95. Saha S, Datta K, Rangarajan P (2007) Characterization of mouse neuronal Ca2+/calmodulin kinase II inhibitor α. Brain Res 1148:38–42PubMedCrossRefGoogle Scholar
  96. Sainlos M, Tigaret C, Poujol C, Olivier NB, Bard L, Breillat C, Thiolon K, Choquet D, Imperiali B (2011) Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 7:81–91PubMedCrossRefGoogle Scholar
  97. Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6:10PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sanhueza M, McIntyre CC, Lisman JE (2007) Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor. J Neurosci 27:5190–5199PubMedCrossRefGoogle Scholar
  99. Sanhueza M, Fernandez-Villalobos G, Stein IS, Kasumova G, Zhang P, Bayer KU, Otmakhov N, Hell JW, Lisman J (2011) Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci 31:9170–9178PubMedPubMedCentralCrossRefGoogle Scholar
  100. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99:13902–13907PubMedPubMedCentralCrossRefGoogle Scholar
  101. Segal M (2005) Dendritic spines and long-term plasticity. Nat Rev Neurosci 6:277–284PubMedCrossRefGoogle Scholar
  102. Sharma K, Fong DK, Craig AM (2006) Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci 31:702–712PubMedCrossRefGoogle Scholar
  103. Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166PubMedCrossRefGoogle Scholar
  104. Shen K, Teruel MN, Subramanian K, Meyer T (1998) CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron 21:593–606PubMedCrossRefGoogle Scholar
  105. Shonesy BC, Jalan-Sakrikar N, Cavener VS, Colbran RJ (2014) CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci 122:61–87PubMedCrossRefGoogle Scholar
  106. Silva A, Stevens C, Tonegawa S, Wang Y (1992a) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257:201–206PubMedCrossRefGoogle Scholar
  107. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992b) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257:206–211PubMedCrossRefGoogle Scholar
  108. Stein IS, Donaldson MS, Hell JW (2014) CaMKII binding to GluN2B is important for massed spatial learning in the Morris water maze. F1000Res 3:193PubMedPubMedCentralGoogle Scholar
  109. Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 273:20689–20692PubMedCrossRefGoogle Scholar
  110. Strack S, Choi S, Lovinger DM, Colbran RJ (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272:13467–13470PubMedCrossRefGoogle Scholar
  111. Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J Neurosci 29:12845–12854PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sumioka A, Yan D, Tomita S (2010) TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  113. Suzuki T (1994) Protein kinases involved in the expression of long-term potentiation. Int J Biochem 26:735–744PubMedCrossRefGoogle Scholar
  114. Takahashi T, Svoboda K, Malinow R (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299:1585–1588PubMedCrossRefGoogle Scholar
  115. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–277PubMedCrossRefGoogle Scholar
  116. Tsui J, Malenka RC (2006) Substrate localization creates specificity in calcium/calmodulin-dependent protein kinase II signaling at synapses. J Biol Chem 281:13794–13804PubMedCrossRefGoogle Scholar
  117. Vest RS, Davies KD, O’Leary H, Port JD, Bayer KU (2007) Dual mechanism of a natural CaMKII inhibitor. Mol Biol Cell 18:5024–5033PubMedPubMedCentralCrossRefGoogle Scholar
  118. Waxham MN, Tsai AL, Putkey JA (1998) A mechanism for calmodulin (CaM) trapping by CaM-kinase II defined by a family of CaM-binding peptides. J Biol Chem 273:17579–17584PubMedCrossRefGoogle Scholar
  119. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRefGoogle Scholar
  120. Yamagata Y, Kobayashi S, Umeda T, Inoue A, Sakagami H, Fukaya M, Watanabe M, Hatanaka N, Totsuka M, Yagi T et al (2009) Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci 29:7607–7618PubMedCrossRefGoogle Scholar
  121. Zhang L, Kirschstein T, Sommersberg B, Merkens M, Manahan-Vaughan D, Elgersma Y, Beck H (2005) Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II. J Neurosci 25:7697–7707PubMedCrossRefGoogle Scholar
  122. Zhang Y, Holbro N, Oertner TG (2008) Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII. Proc Natl Acad Sci U S A 105:12039–12044PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhou Q, Homma KJ, Poo M (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757PubMedCrossRefGoogle Scholar
  124. Zhou Y, Takahashi E, Li W, Halt A, Wiltgen B, Ehninger D, Li G-D, Hell JW, Kennedy MB, Silva AJ (2007) Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J Neurosci 27:13843–13853PubMedCrossRefGoogle Scholar
  125. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110:443–455PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesUniversity of ChileSantiagoChile
  2. 2.Universidad de los AndesSantiagoChile

Personalised recommendations