AMPA Receptor Plasticity in Retrieval, Reconsolidation and Post-retrieval Extinction of Memories

  • Priyanka Rao-RuizEmail author
  • Leanne J. M. Schmitz
  • August B. Smit
  • Sabine Spijker


Learning and memory are evolutionary evolved ‘survival factors’. They are fundamental in nature, as most species use stored information related to experience to adapt to constantly changing environments. When experiences are aversive (fearful), they should be avoided upon renewed contact. Thus, coupling environmental stimuli to aversive events enables the individual to respond adequately later in time. This involves implicit (non-declarative) learning in which the resulting associative memories can be recalled reflexively and may have lifetime persistence. Sometimes this learning can be maladaptive, resulting in a hyper-responsive system, in which stimulus-induced recall of memory leads to excessive fear and anxiety. In order to develop new therapeutic strategies to treat such disorders, it is important to understand the neural mechanisms of the capacity to encode, store, consolidate, retrieve and erase information. In this chapter we will touch upon synaptic plasticity mechanisms that underlie memory formation, and focus on the role of AMPA receptor (AMPAR) plasticity in the amygdala and hippocampus during the retrieval, destabilization and subsequent restabilization of memory.


Hippocampus Amygdala Contextual fear conditioning Aversive memory Glutamate receptor trafficking Synaptic plasticity 


  1. Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, Taghibiglou C, Wang Y, Lu J, Wong TP, Sheng M, Wang YT (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23:1040–1050CrossRefPubMedPubMedCentralGoogle Scholar
  2. Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology (Berl) 226:631–647CrossRefGoogle Scholar
  3. Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER (2000) Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci 1:11–20CrossRefPubMedGoogle Scholar
  4. Berlau DJ, McGaugh JL (2006) Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 86:123–132CrossRefPubMedGoogle Scholar
  5. Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S, Phelps L, Phillips AG, Wang YT (2005) Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310:1340–1343CrossRefPubMedGoogle Scholar
  6. Cazakoff BN, Howland JG (2011) AMPA receptor endocytosis in rat perirhinal cortex underlies retrieval of object memory. Learn Mem 18:688–692CrossRefPubMedGoogle Scholar
  7. Chan WY, Leung HT, Westbrook RF, McNally GP (2010) Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learn Mem 17:512–521CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20:7258–7267PubMedGoogle Scholar
  9. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41CrossRefPubMedGoogle Scholar
  10. Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330(6007):1108–1112CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coccoz V, Maldonado H, Delorenzi A (2011) The enhancement of reconsolidation with a naturalistic mild stressor improves the expression of a declarative memory in humans. Neuroscience 185:61–72CrossRefPubMedGoogle Scholar
  12. Collingridge GL, Olsen R, Peters JA, Spedding M (2009) Ligand gated ion channels. Neuropharmacology 56:1CrossRefPubMedGoogle Scholar
  13. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473CrossRefPubMedGoogle Scholar
  14. Collins DR, Pare D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn Mem 7:97–103CrossRefPubMedPubMedCentralGoogle Scholar
  15. Costanzi M, Cannas S, Saraulli D, Rossi-Arnaud C, Cestari V (2011) Extinction after retrieval: effects on the associative and nonassociative components of remote contextual fear memory. Learn Mem 18:508–518CrossRefPubMedGoogle Scholar
  16. Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538CrossRefPubMedGoogle Scholar
  17. Flavell CR, Barber DJ, Lee JL (2011) Behavioural memory reconsolidation of food and fear memories. Nat Commun 2:504CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flavell CR, Lambert EA, Winters BD, Bredy TW (2013) Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ (2006) Stability of recent and remote contextual fear memory. Learn Mem 13:451–457CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A 107:16697–16702CrossRefPubMedPubMedCentralGoogle Scholar
  21. Glickman SE (1961) Perseverative neural processes and consolidation of the memory trace. Psychol Bull 58:218–233CrossRefPubMedGoogle Scholar
  22. Gordon WC, Spear NE (1973) The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol Behav 10:1071–1075CrossRefPubMedGoogle Scholar
  23. Graff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J, Rei D, Bero AW, Phan TX, Wagner F, Holson E, Xu J, Sun J, Neve RL, Mach RH, Haggarty SJ, Tsai LH (2014) Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261–276CrossRefPubMedPubMedCentralGoogle Scholar
  24. Harms KJ, Tovar KR, Craig AM (2005) Synapse-specific regulation of AMPA receptor subunit composition by activity. J Neurosci 25:6379–6388CrossRefPubMedGoogle Scholar
  25. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267CrossRefPubMedGoogle Scholar
  26. He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee HK (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci U S A 106:20033–20038CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  28. Hong I, Kim J, Lee S, Ko HG, Nader K, Kaang BK, Tsien RW, Choi S (2013) AMPA receptor exchange underlies transient memory destabilization on retrieval. Proc Natl Acad Sci U S A 110:8218–8223CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, Cheah J, Lowenstein C, Huganir RL, Snyder SH (2005) S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46:533–540CrossRefPubMedGoogle Scholar
  30. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717CrossRefPubMedPubMedCentralGoogle Scholar
  31. Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871CrossRefPubMedGoogle Scholar
  32. Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147:509–524CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kearns MC, Ressler KJ, Zatzick D, Rothbaum BO (2012) Early interventions for PTSD: a review. Depress Anxiety 29:833–842CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kindt M, Soeter M (2013) Reconsolidation in a human fear conditioning study: a test of extinction as updating mechanism. Biol Psychol 92:43–50CrossRefPubMedGoogle Scholar
  36. Leaton RN, Cranney J (1990) Potentiation of the acoustic startle response by a conditioned stimulus paired with acoustic startle stimulus in rats. J Exp Psychol Anim Behav Process 16:279–287CrossRefPubMedGoogle Scholar
  37. Lee JL (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci 11:1264–1266CrossRefPubMedGoogle Scholar
  38. Lee JL (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–420CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee JL (2010) Memory reconsolidation mediates the updating of hippocampal memory content. Front Behav Neurosci 4:168CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959CrossRefPubMedGoogle Scholar
  41. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112:631–643CrossRefPubMedGoogle Scholar
  42. Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843CrossRefPubMedGoogle Scholar
  43. Lee JL, Milton AL, Everitt BJ (2006) Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci 26:10051–10056CrossRefPubMedGoogle Scholar
  44. Ma X, Zhang JJ, Yu LC (2012) Post-retrieval extinction training enhances or hinders the extinction of morphine-induced conditioned place preference in rats dependent on the retrieval-extinction interval. Psychopharmacology (Berl) 221:19–26CrossRefGoogle Scholar
  45. Mactutus CF, Riccio DC, Ferek JM (1979) Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204:1319–1320CrossRefPubMedGoogle Scholar
  46. Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35:1625–1652PubMedPubMedCentralGoogle Scholar
  47. Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538CrossRefPubMedGoogle Scholar
  48. Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y Acad Sci 1003:1–11CrossRefPubMedGoogle Scholar
  49. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21CrossRefPubMedGoogle Scholar
  50. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefPubMedGoogle Scholar
  51. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, Kida S (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29:402–413CrossRefPubMedGoogle Scholar
  52. Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931CrossRefPubMedGoogle Scholar
  53. Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47:783–786CrossRefPubMedGoogle Scholar
  54. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14:417–428CrossRefPubMedPubMedCentralGoogle Scholar
  55. Massey PV, Bashir ZI (2007) Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30:176–184CrossRefPubMedGoogle Scholar
  56. Matsuo N, Reijmers L, Mayford M (2008) Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319:1104–1107CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mauk MD, Medina JF, Nores WL, Ohyama T (2000) Cerebellar function: coordination, learning or timing? Curr Biol 10:R522–R525CrossRefPubMedGoogle Scholar
  58. McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358CrossRefPubMedGoogle Scholar
  59. Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555CrossRefPubMedGoogle Scholar
  60. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955CrossRefPubMedPubMedCentralGoogle Scholar
  61. Muller GE, Pilzecker A (1900) Experimentelle Beitrage zur Lehre von Gedächtnis. Z Psychol 1:1–300Google Scholar
  62. Nader K (2003) Memory traces unbound. Trends Neurosci 26:65–72CrossRefPubMedGoogle Scholar
  63. Nader K, Einarsson EO (2010) Memory reconsolidation: an update. Ann N Y Acad Sci 1191:27–41CrossRefPubMedGoogle Scholar
  64. Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10:224–234CrossRefPubMedGoogle Scholar
  65. Nader K, Schafe GE, Le Doux JE (2000a) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726CrossRefPubMedGoogle Scholar
  66. Nader K, Schafe GE, LeDoux JE (2000b) The labile nature of consolidation theory. Nat Rev Neurosci 1:216–219CrossRefPubMedGoogle Scholar
  67. Oyarzun JP, Lopez-Barroso D, Fuentemilla L, Cucurell D, Pedraza C, Rodriguez-Fornells A, de Diego-Balaguer R (2012) Updating fearful memories with extinction training during reconsolidation: a human study using auditory aversive stimuli. PLoS One 7, e38849CrossRefPubMedPubMedCentralGoogle Scholar
  68. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21:5417–5428PubMedGoogle Scholar
  69. Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320CrossRefPubMedGoogle Scholar
  70. Quirk GJ, Pare D, Richardson R, Herry C, Monfils MH, Schiller D, Vicentic A (2010) Erasing fear memories with extinction training. J Neurosci 30:14993–14997CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rao-Ruiz P, Rotaru DC, van der Loo RJ, Mansvelder HD, Stiedl O, Smit AB, Spijker S (2011) Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci 14:1302–1308CrossRefPubMedGoogle Scholar
  72. Roberts AC, Glanzman DL (2003) Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci 26:662–670CrossRefPubMedGoogle Scholar
  73. Roberts AJ, Hedlund PB (2012) The 5-HT(7) receptor in learning and memory. Hippocampus 22:762–771CrossRefPubMedGoogle Scholar
  74. Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE (2002) The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 22:5219–5229PubMedGoogle Scholar
  75. Rohrbaugh M, Riccio DC (1970) Paradoxical enhancement of learned fear. J Abnorm Psychol 75:210–216CrossRefPubMedGoogle Scholar
  76. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88CrossRefPubMedGoogle Scholar
  77. Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84CrossRefPubMedGoogle Scholar
  78. Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540–546CrossRefPubMedGoogle Scholar
  79. Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53CrossRefPubMedGoogle Scholar
  80. Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23:9220–9228PubMedGoogle Scholar
  81. Selvakumar B, Jenkins MA, Hussain NK, Huganir RL, Traynelis SF, Snyder SH (2013) S-nitrosylation of AMPA receptor GluA1 regulates phosphorylation, single-channel conductance, and endocytosis. Proc Natl Acad Sci U S A 110:1077–1082CrossRefPubMedGoogle Scholar
  82. Sevenster D, Beckers T, Kindt M (2012) Retrieval per se is not sufficient to trigger reconsolidation of human fear memory. Neurobiol Learn Mem 97:338–345CrossRefPubMedGoogle Scholar
  83. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860CrossRefPubMedGoogle Scholar
  84. Soeter M, Kindt M (2011) Disrupting reconsolidation: pharmacological and behavioral manipulations. Learn Mem 18:357–366CrossRefPubMedGoogle Scholar
  85. Sorg BA (2012) Reconsolidation of drug memories. Neurosci Biobehav Rev 36:1400–1417CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sumioka A (2013) Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking. J Biochem 153:331–337CrossRefPubMedGoogle Scholar
  87. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795CrossRefPubMedGoogle Scholar
  88. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275CrossRefPubMedGoogle Scholar
  89. Tronson NC, Wiseman SL, Olausson P, Taylor JR (2006) Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 9:167–169CrossRefPubMedGoogle Scholar
  90. Tully K, Bolshakov VY (2010) Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 3:15CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang SH, de Oliveira AL, Nader K (2009) Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat Neurosci 12:905–912CrossRefPubMedGoogle Scholar
  92. Warren VT, Anderson KM, Kwon C, Bosshardt L, Jovanovic T, Bradley B, Norrholm SD (2014) Human fear extinction and return of fear using reconsolidation update mechanisms: the contribution of on-line expectancy ratings. Neurobiol Learn Mem 113:165–173CrossRefPubMedGoogle Scholar
  93. Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16:1982–1989PubMedGoogle Scholar
  94. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097CrossRefPubMedGoogle Scholar
  95. Wichert S, Wolf OT, Schwabe L (2011) Reactivation, interference, and reconsolidation: are recent and remote memories likewise susceptible? Behav Neurosci 125:699–704CrossRefPubMedGoogle Scholar
  96. Woods S, Clarke NN, Layfield R, Fone KC (2012) 5-HT(6) receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br J Pharmacol 167:436–449CrossRefPubMedPubMedCentralGoogle Scholar
  97. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, Zhu WL, Ding ZB, Bao YP, Shi J, Epstein DH, Shaham Y, Lu L (2012) A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336:241–245CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhou M, Conboy L, Sandi C, Joels M, Krugers HJ (2009) Fear conditioning enhances spontaneous AMPA receptor-mediated synaptic transmission in mouse hippocampal CA1 area. Eur J Neurosci 30:1559–1564CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Priyanka Rao-Ruiz
    • 1
    • 2
    Email author
  • Leanne J. M. Schmitz
    • 1
  • August B. Smit
    • 1
  • Sabine Spijker
    • 1
  1. 1.Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchNeuroscience Campus Amsterdam, VU UniversityAmsterdamThe Netherlands
  2. 2.Department of PsychiatryErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations