Skip to main content

Constructing SAT Filters with a Quantum Annealer

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9340)

Abstract

SAT filters are a novel and compact data structure that can be used to quickly query a word for membership in a fixed set. They have the potential to store more information in a fixed storage limit than a Bloom filter. Constructing a SAT filter requires sampling diverse solutions to randomly constructed constraint satisfaction instances, but there is flexibility in the choice of constraint satisfaction problem. Presented here is a case study of SAT filter construction with a focus on constraint satisfaction problems based on MAX-CUT clauses (Not-all-equal 3-SAT, 2-in-4-SAT, etc.) and frustrated cycles in the Ising model. Solutions are sampled using a D-Wave quantum annealer, and results are measured against classical approaches. The SAT variants studied are of interest in the context of SAT filters, independent of the solvers used.

Keywords

  • SAT filter
  • Quantum annealing
  • Ising model
  • Maximum cut
  • Sampling
  • Constraint satisfaction problem

References

  1. Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Physical Review A 91(4), 042314 (2015)

    CrossRef  Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)

    CrossRef  MATH  Google Scholar 

  3. Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Amin, M., Smirnov, A., Mohseni, M., Neven, H.: Computational role of collective tunneling in a quantum annealer. arXiv preprint arXiv:1411.4036 (2014)

  4. Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare, F., Berkley, A., Harris, R., Hilton, J., Lanting, T., Przybysz, A., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity (2014)

    Google Scholar 

  5. Cai, J., Macready, W., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)

  6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Information Processing 7(5), 193–209 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-SAT. Artificial Intelligence 81(1), 31–57 (1996)

    MathSciNet  CrossRef  Google Scholar 

  9. Dickson, N., et al.: Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, May 1903, January 2013. http://www.ncbi.nlm.nih.gov/pubmed/23695697

  10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer (2012)

    Google Scholar 

  11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than Bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 75–88. ACM (2014)

    Google Scholar 

  12. Gableske, O.: Dimetheus. In: SAT Competition 2014: Solver and Benchmark Descriptions, pp. 29–30 (2014)

    Google Scholar 

  13. Gableske, O.: An Ising model inspired extension of the product-based MP framework for SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 367–383. Springer, Heidelberg (2014)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman (1979)

    Google Scholar 

  15. Hen, I., Albash, T., Job, J., Rønnow, T.F., Troyer, M., Lidar, D.: Probing for quantum speedup in spin glass problems with planted solutions (2015). arXiv preprint arXiv:1502.01663v2

  16. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Jiménez, A., Kiwi, M.: Computational hardness of enumerating groundstates of the antiferromagnetic Ising model in triangulations. Discrete Applied Mathematics (2014)

    Google Scholar 

  18. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    CrossRef  Google Scholar 

  19. King, A.D.: Performance of a quantum annealer on range-limited constraint satisfaction problems (2015). arXiv preprint arXiv:1502.02098v1

  20. King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv preprint arXiv:1410.2628 (2014)

  21. Krimer, E., Erez, M.: The power of \(1+\alpha \) for memory-efficient Bloom filters. Internet Mathematics 7(1), 28–44 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. Krzakala, F., Zdeborová, L.: Phase transitions and computational difficulty in random constraint satisfaction problems. In: Journal of Physics: Conference Series, vol. 95, p. 012012. IOP Publishing (2008)

    Google Scholar 

  23. Lovász, L.: Coverings and colorings of hypergraphs. In: Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 3–12. Utilitas Mathematica Publishing, Winnipeg (1973)

    Google Scholar 

  24. Lovett, S., Porat, E.: A lower bound for dynamic approximate membership data structures. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 797–804. IEEE (2010)

    Google Scholar 

  25. Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2(5) (2014)

    Google Scholar 

  26. Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. Journal of Statistical Physics 124(6), 1317–1350 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press (2009)

    Google Scholar 

  28. Pagh, A., Pagh, R., Rao, S.S.: An optimal Bloom filter replacement. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 823–829. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  29. Porat, E.: An optimal Bloom filter replacement based on matrix solving. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 263–273. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  30. Putze, F., Sanders, P., Singler, J.: Cache-, hash- and space-efficient Bloom filters. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 108–121. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  31. Rønnow, T., Wang, Z., Job, J., Boixo, S., Isakov, S., Wecker, D., Martinis, J., Lidar, D., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    CrossRef  Google Scholar 

  32. Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration. arXiv preprint arXiv:1409.3934v1 (2014)

  33. Selman, B., Kautz, H., Cohen, B., et al.: Local search strategies for satisfiability testing. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge 26, 521–532 (1993)

    CrossRef  MATH  Google Scholar 

  34. Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  35. Venturelli, D., Mandrà, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully-connected spin glasses. arXiv preprint arXiv:1406.7553 (2014)

  36. Walker, A.: Filters. Undergraduate thesis, Haverford College, Haverford, PA (2007)

    Google Scholar 

  37. Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-based set membership filters. Journal on Satisfiability, Boolean Modeling and Computation 8, 129–148 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Zdeborová, L., Mézard, M.: Locked constraint satisfaction problems. Physical Review Letters 101(7), 078702 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. King .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

Copyright information

© 2015 D-Wave Systems Inc.

About this paper

Cite this paper

Douglass, A., King, A.D., Raymond, J. (2015). Constructing SAT Filters with a Quantum Annealer. In: Heule, M., Weaver, S. (eds) Theory and Applications of Satisfiability Testing -- SAT 2015. SAT 2015. Lecture Notes in Computer Science(), vol 9340. Springer, Cham. https://doi.org/10.1007/978-3-319-24318-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24318-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24317-7

  • Online ISBN: 978-3-319-24318-4

  • eBook Packages: Computer ScienceComputer Science (R0)