Abstract
SAT filters are a novel and compact data structure that can be used to quickly query a word for membership in a fixed set. They have the potential to store more information in a fixed storage limit than a Bloom filter. Constructing a SAT filter requires sampling diverse solutions to randomly constructed constraint satisfaction instances, but there is flexibility in the choice of constraint satisfaction problem. Presented here is a case study of SAT filter construction with a focus on constraint satisfaction problems based on MAX-CUT clauses (Not-all-equal 3-SAT, 2-in-4-SAT, etc.) and frustrated cycles in the Ising model. Solutions are sampled using a D-Wave quantum annealer, and results are measured against classical approaches. The SAT variants studied are of interest in the context of SAT filters, independent of the solvers used.
Keywords
- SAT filter
- Quantum annealing
- Ising model
- Maximum cut
- Sampling
- Constraint satisfaction problem
Download conference paper PDF
References
Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Physical Review A 91(4), 042314 (2015)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)
Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Amin, M., Smirnov, A., Mohseni, M., Neven, H.: Computational role of collective tunneling in a quantum annealer. arXiv preprint arXiv:1411.4036 (2014)
Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare, F., Berkley, A., Harris, R., Hilton, J., Lanting, T., Przybysz, A., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity (2014)
Cai, J., Macready, W., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013)
Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Information Processing 7(5), 193–209 (2008)
Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-SAT. Artificial Intelligence 81(1), 31–57 (1996)
Dickson, N., et al.: Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, May 1903, January 2013. http://www.ncbi.nlm.nih.gov/pubmed/23695697
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer (2012)
Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than Bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 75–88. ACM (2014)
Gableske, O.: Dimetheus. In: SAT Competition 2014: Solver and Benchmark Descriptions, pp. 29–30 (2014)
Gableske, O.: An Ising model inspired extension of the product-based MP framework for SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 367–383. Springer, Heidelberg (2014)
Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman (1979)
Hen, I., Albash, T., Job, J., Rønnow, T.F., Troyer, M., Lidar, D.: Probing for quantum speedup in spin glass problems with planted solutions (2015). arXiv preprint arXiv:1502.01663v2
Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986)
Jiménez, A., Kiwi, M.: Computational hardness of enumerating groundstates of the antiferromagnetic Ising model in triangulations. Discrete Applied Mathematics (2014)
Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)
King, A.D.: Performance of a quantum annealer on range-limited constraint satisfaction problems (2015). arXiv preprint arXiv:1502.02098v1
King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv preprint arXiv:1410.2628 (2014)
Krimer, E., Erez, M.: The power of \(1+\alpha \) for memory-efficient Bloom filters. Internet Mathematics 7(1), 28–44 (2011)
Krzakala, F., Zdeborová, L.: Phase transitions and computational difficulty in random constraint satisfaction problems. In: Journal of Physics: Conference Series, vol. 95, p. 012012. IOP Publishing (2008)
Lovász, L.: Coverings and colorings of hypergraphs. In: Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 3–12. Utilitas Mathematica Publishing, Winnipeg (1973)
Lovett, S., Porat, E.: A lower bound for dynamic approximate membership data structures. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 797–804. IEEE (2010)
Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2(5) (2014)
Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. Journal of Statistical Physics 124(6), 1317–1350 (2006)
Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press (2009)
Pagh, A., Pagh, R., Rao, S.S.: An optimal Bloom filter replacement. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 823–829. Society for Industrial and Applied Mathematics (2005)
Porat, E.: An optimal Bloom filter replacement based on matrix solving. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 263–273. Springer, Heidelberg (2009)
Putze, F., Sanders, P., Singler, J.: Cache-, hash- and space-efficient Bloom filters. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 108–121. Springer, Heidelberg (2007)
Rønnow, T., Wang, Z., Job, J., Boixo, S., Isakov, S., Wecker, D., Martinis, J., Lidar, D., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)
Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration. arXiv preprint arXiv:1409.3934v1 (2014)
Selman, B., Kautz, H., Cohen, B., et al.: Local search strategies for satisfiability testing. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge 26, 521–532 (1993)
Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006)
Venturelli, D., Mandrà, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully-connected spin glasses. arXiv preprint arXiv:1406.7553 (2014)
Walker, A.: Filters. Undergraduate thesis, Haverford College, Haverford, PA (2007)
Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-based set membership filters. Journal on Satisfiability, Boolean Modeling and Computation 8, 129–148 (2014)
Zdeborová, L., Mézard, M.: Locked constraint satisfaction problems. Physical Review Letters 101(7), 078702 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Copyright information
© 2015 D-Wave Systems Inc.
About this paper
Cite this paper
Douglass, A., King, A.D., Raymond, J. (2015). Constructing SAT Filters with a Quantum Annealer. In: Heule, M., Weaver, S. (eds) Theory and Applications of Satisfiability Testing -- SAT 2015. SAT 2015. Lecture Notes in Computer Science(), vol 9340. Springer, Cham. https://doi.org/10.1007/978-3-319-24318-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-24318-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24317-7
Online ISBN: 978-3-319-24318-4
eBook Packages: Computer ScienceComputer Science (R0)