PBLib – A Library for Encoding Pseudo-Boolean Constraints into CNF

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)


PBLib is an easy-to-use and efficient library, written in C++, for translating pseudo-Boolean (PB) constraints into CNF. We have implemented fifteen different encodings of PB constraints. Our aim is to use efficient encodings, in terms of formula size and whether unit propagation maintains generalized arc consistency. Moreover, PBLib normalizes PB constraints and automatically uses a suitable encoder for the translation. We also support incremental strengthening for optimization problems, where the tighter bound is realized with few additional clauses, as well as conditions for PB constraints.


Unit Propagation Constraint Programming Conjunctive Normal Form Cardinality Constraint Conjunctive Normal Form Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for smaller and better encodings of cardinality constraints. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-Boolean satisfiability problems with stochastic local search: A comparison of encodings. Journal of Automated Reasoning 35 (2005)Google Scholar
  3. 3.
    Bailleux, O.: Boolvar/PB 1.0 (2012).
  4. 4.
    Belov, A., Janota, M., Lynce, I., Marques-Silva, J.: On computing minimal equivalent subformulas. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 158–174. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Applied Mathematics 123(1–3), 155–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, J.: A new SAT encoding of the at-most-one constraint. In: ModRef 2010 (2010)Google Scholar
  8. 8.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)zbMATHGoogle Scholar
  11. 11.
    Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Hölldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-boolean constraints into SAT. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 107–118. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  13. 13.
    Hölldobler, S., Nguyen, V.H.: On SAT-encodings of the at-most-one constraint. In: ModRef 2013 (2013)Google Scholar
  14. 14.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: BDDs for pseudo-boolean constraints – revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) ECAI 1992, pp. 359–363. John Wiley & Sons Inc., New York (1992)Google Scholar
  16. 16.
    Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search. In: AAAI 1996, pp. 1194–1201. MIT Press (1996)Google Scholar
  17. 17.
    Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In: CFV 2007 (2007)Google Scholar
  18. 18.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Manthey, N., Philipp, T., Steinke, P.: A more compact translation of pseudo-boolean constraints into CNF such that generalized arc consistency is maintained. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS, vol. 8736, pp. 123–134. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Manthey, N., Steinke, P.: npSolver - a SAT based solver for optimization problems. In: POS 2012 (2012)Google Scholar
  22. 22.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010, pp. 121–128 (2010)Google Scholar
  23. 23.
    Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  24. 24.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier Science Inc., New York (2006)zbMATHGoogle Scholar
  26. 26.
    Roussel, O., Manquinho, V.: Input/output format and solver requirements for the competitions of pseudo-Boolean solvers (2012)Google Scholar
  27. 27.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  28. 28.
    Sorensson, N., Een, N.: MiniSat - a SAT solver with conflict-clause minimization. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS. Springer, Heidelberg (2005) Google Scholar
  29. 29.
    Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination resolution for preprocessing SAT instances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  30. 30.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation, pp. 466–483. Springer, Heidelberg (1983)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Knowledge Representation and Reasoning GroupTechnische Universität DresdenDresdenGermany

Personalised recommendations