Skip to main content

Preprocessing for DQBF

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing -- SAT 2015 (SAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9340))

Abstract

For SAT and QBF formulas many techniques are applied in order to reduce/modify the number of variables and clauses of the formula, before the formula is passed to the actual solving algorithm. It is well known that these preprocessing techniques often reduce the computation time of the solver by orders of magnitude. In this paper we generalize different preprocessing techniques for SAT and QBF problems to dependency quantified Boolean formulas (DQBF) and describe how they need to be adapted to work with a DQBF solver core. We demonstrate their effectiveness both for CNF- and non-CNF-based DQBF algorithms.

This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center AVACS (SFB/TR 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 117–148 (2003)

    Article  Google Scholar 

  2. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: TIGUAN: thread-parallel integrated test pattern generator utilizing satisfiability analysis. In: International Conference on VLSI Design, pp. 227–232. IEEE Computer Society, New Delhi, India (2009)

    Google Scholar 

  3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)

    Google Scholar 

  5. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cook, S.A.: The complexity of theorem-proving procedures. In: Annual ACM Symposium on Theory of Computing (STOC), ACM Press, pp. 151–158 (1971)

    Google Scholar 

  7. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time: Preliminary report. In: Annual ACM Symposium on Theory of Computing (STOC), pp. 1–9. ACM Press (1973)

    Google Scholar 

  8. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative games of incomplete information. Computers and Mathematics with Applications 41(7–8), 957–992 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence checking of partial designs using dependency quantified Boolean formulae. In: IEEE Int’l Conf. on Computer Design (ICCD), Asheville, NC, USA, IEEE Computer Society, pp. 396–403 (2013)

    Google Scholar 

  10. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF solving. In: Berre, D.L. (ed.) Int’l Workshop on Pragmatics of SAT (POS). EPiC Series, vol. 27, pp. 103–116. Vienna, Austria, EasyChair (2014)

    Google Scholar 

  12. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier elimination. In: Int’l Conf. on Design, Automation and Test in Europe (DATE), Grenoble, France, IEEE (2015)

    Google Scholar 

  13. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: Kuipers, B., Webber, B.L. (eds.): National Conference on Artificial Intelligence / Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI), Providence, Rhode Island, USA, AAAI Press / The MIT Press, pp. 203–208 (1997)

    Google Scholar 

  14. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Veloso, M.M., Kambhampati, S. (eds.): National Conference on Artificial Intelligence / Int’l Conf. on Innovative Applications of Artificial Intelligence (IAAI), Pittsburgh, Pennsylvania, USA, AAAI Press / The MIT Press, pp. 1368–1373 (2005)

    Google Scholar 

  20. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of propositional formulae. AI Communications 28(2), 161–177 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)

    Google Scholar 

  22. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Conf, I. (ed.) on Design, Automation and Test in Europe (DATE), pp. 1596–1601. IEEE, Nice, France (2009)

    Google Scholar 

  24. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF (extended version). Reports of SFB/TR 14 AVACS number 110 (2015). http://www.avacs.org

  26. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic Part 2, 115–125 (1970)

    Article  Google Scholar 

  27. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. vol. 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2008)

    Google Scholar 

  28. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: Int’l Workshop on Pragmatics of SAT (POS), Trento, Italy (2012)

    Google Scholar 

  29. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier elimination. Reports of SFB/TR 14 AVACS 107 (2015). http://www.avacs.org

  30. Pigorsch, F., Scholl, C.: An AIG-based QBF-solver using SAT for preprocessing. In: Sapatnekar, S.S. (ed.) ACM/IEEE Design Automation Conference (DAC), pp. 170–175. ACM Press, Anaheim, CA, USA (2010)

    Google Scholar 

  31. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)

    Article  Google Scholar 

  33. Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Ann. Math. Artif. Intell. 43(1), 239–253 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of Automated Reasoning 42(1), 77–97 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  38. Lonsing, F., Biere, A.: Efficiently representing existential dependency sets for expansion-based QBF solvers. Electronic Notes in Theoretical Computer Science 251, 83–95 (2009)

    Article  MATH  Google Scholar 

  39. Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  40. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  41. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formulae: A certification perspective of DQBF. Theoretical Computer Science 523, 86–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bubeck, U., Kleine Büning, H.: Dependency quantified horn formulas: models and complexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  43. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of Paderborn (2010)

    Google Scholar 

  44. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  45. Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: Voronkov, A., Sutcliffe, G., Baaz, M., Fermüller, C.G. (eds.): Int’l Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (Short papers). vol. 13 of EPiC Series, Yogyakarta, Indonesia, EasyChair, pp. 41–46 (2010)

    Google Scholar 

  46. Heule, M.J.H., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 436–442. Springer, Heidelberg (2015)

    Google Scholar 

  47. Lonsing, F., Egly, U.: Incremental QBF solving by DepQBF. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 307–314. Springer, Heidelberg (2014)

    Google Scholar 

  48. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on Satisfiability, Boolean Modelling and Computation 7(2–3), 71–76 (2010)

    Google Scholar 

  49. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Transactions on CAD of Integrated Circuits and Systems 21(12), 1377–1394 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B. (2015). Preprocessing for DQBF. In: Heule, M., Weaver, S. (eds) Theory and Applications of Satisfiability Testing -- SAT 2015. SAT 2015. Lecture Notes in Computer Science(), vol 9340. Springer, Cham. https://doi.org/10.1007/978-3-319-24318-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24318-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24317-7

  • Online ISBN: 978-3-319-24318-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics