Advertisement

Integrating Simplex with Tableaux

  • Guillaume Bury
  • David Delahaye
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)

Abstract

We propose an extension of a tableau-based calculus to deal with linear arithmetic. This extension consists of a smooth integration of arithmetic deductive rules to the basic tableau rules, so that there is a natural interleaving between arithmetic and regular analytic rules. The arithmetic rules rely on the general simplex algorithm to compute solutions for systems over rationals, as well as on the branch and bound method to deal with integer systems. We also describe our implementation in the framework of Zenon, an automated theorem prover that is able to deal with first order logic with equality. This implementation has been provided with a backend verifier that relies on the Coq proof assistant, and which can verify the validity of the generated arithmetic proofs. Finally, we present some experimental results over the arithmetic category of the TPTP library, and problems of program verification coming from the benchmark provided by the BWare project.

Keywords

Tableaux Linear Arithmetic General Simplex Algorithm Branch and Bound Method Proof Checking Zenon Coq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996) ISBN: 0521496195Google Scholar
  2. 2.
    Barendregt, H., Barendsen, E.: Autarkic Computations in Formal Proofs. Journal of Automated Reasoning (JAR) 28(3), 321–336 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, P., Waldmann, U.: Hierarchic Superposition with Weak Abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chvátal, V.: Linear Programming. Series of Books in the Mathematical Sciences. W.H. Freeman and Company, New York (1983). ISBN: 0716715872.Google Scholar
  7. 7.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 274–290. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a proof platform for the automated verification of B proof obligations. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated Reasoning (JAR) 31(1), 33–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dutertre, B., De Moura, L.M.: Integrating Simplex with DPLL(T). Technical Report SRI-CSL-06-01, SRI International, May 2006Google Scholar
  12. 12.
    Gomory, R.: An Algorithm for Integer Solutions to Linear Problems. In: Recent Advances in Mathematical Programming, pp. 269–302 (1963)Google Scholar
  13. 13.
    Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2008) ISBN: 9783540741046 (Germany)Google Scholar
  14. 14.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc, New York (1999) ISBN: 9780471359432zbMATHGoogle Scholar
  15. 15.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning (JAR) 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    The BWare Project (2012). http://bware.lri.fr/.
  18. 18.
    The Coq Development Team. Coq, version 8.4pl6. Inria (April 2015), http://coq.inria.fr/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cedric/Cnam/InriaParisFrance

Personalised recommendations