Advertisement

A Modal-Layered Resolution Calculus for K

  • Cláudia Nalon
  • Ullrich Hustadt
  • Clare Dixon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)

Abstract

Resolution-based provers for multimodal normal logics require pruning of the search space for a proof in order to deal with the inherent intractability of the satisfiability problem for such logics. We present a clausal modal-layered hyper-resolution calculus for the basic multimodal logic, which divides the clause set according to the modal depth at which clauses occur. We show that the calculus is complete for the logics being considered. We also show that the calculus can be combined with other strategies. In particular, we discuss the completeness of combining modal layering and negative resolution. In addition, we present an incompleteness result for modal layering together with ordered resolution.

Keywords

Automated reasoning normal modal logics resolution method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., de Nivelle, H., de Rijke, M.: Prefixed resolution: A resolution method for modal and description logics. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 187–201. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Areces, C., Gennari, R., Heguiabehere, J., Rijke, M.D.: Tree-based heuristics in modal theorem proving. In: Proc. of ECAI 2000. IOS Press (2000)Google Scholar
  3. 3.
    Areces, C., Gorín, D.: Resolution with order and selection for hybrid logics. Journal of Automated Reasoning 46(1), 1–42 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Areces, C., Heguiabehere, J.: HyLoRes: A hybrid logic prover, September 18 2002, http://citeseer.ist.psu.edu/619572.html; http://turing.wins.uva.nl/~carlos/Papers/aiml2002-2.ps.gz
  5. 5.
    Bachmair, L., Ganzinger, H.: On restrictions of ordered paramodulation with simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Goranko, V., Passy, S.: Using the universal modality: gains and questions. Journal of Logic and Computation 2(1), 5–30 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press (1993)Google Scholar
  9. 9.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54(3), 319–379 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hayes, P.J., Kowalski, R.A.: Semantic trees in automatic theorem proving. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 87–101. Elsevier, New York (1969)Google Scholar
  11. 11.
    Horrocks, I.R., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 181–245. Elsevier Science Inc., New York (2006)Google Scholar
  12. 12.
    Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Baaz, M., Makowsky, J., Voronkov, A. (eds.) Collegium Logicum, pp. 65–79. Kurt Gödel Society (2004)Google Scholar
  13. 13.
    Lee, R.C.T.: A completeness theorem and computer proram for finding theorems derivable from given axioms. Ph.D. thesis, Berkeley (1967)Google Scholar
  14. 14.
    Marx, M., Venema, Y.: Local variations on a loose theme: Modal logic and decidability. In: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science an EATCS Series, pp. 371–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Minicozzi, E., Reiter, R.: A note on linear resolution strategies in consequence-finding. Artificial Intelligence 3(1–3), 175–180 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms 62, 117–134 (2007), http://dl.acm.org/citation.cfm?id=1316091.1316347 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nguyen, L.A.: Negative ordered hyper-resolution as a proof procedure for disjunctive logic programming. Fundam. Inform 70(4), 351–366 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Plaisted, D.A., Greenbaum, S.A.: A Structure-Preserving Clause Form Translation. Journal of Logic and Computation 2, 293–304 (1986)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Robinson, J.A.: Automatic Deduction with Hyper-resolution. International Journal of Computer Mathematics 1, 227–234 (1965)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Schild, K.: A Correspondence theory for terminological logics. In: Proceedings of the 12th IJCAI, pp. 466–471. Springer (1991)Google Scholar
  21. 21.
    Schulz, S.: The E theorem prover (2013), http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
  22. 22.
    Simancik, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Slagle, J.R., Chang, C.L., Lee, R.C.T.: Completeness theorems for semantic resolution in consequence-finding. In: Proceedings of the 1st IJCAI, pp. 281–286. William Kaufmann, May 1969Google Scholar
  24. 24.
    Spaan, E.: Complexity of Modal Logics. Ph.D. thesis, University of Amsterdam (1993)Google Scholar
  25. 25.
    The SPASS Team: Automation of logic: Spass (2010), http://www.spass-prover.org/
  26. 26.
    Voronkov, A.: Vampire, http://www.vprover.org/index.cgi

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departament of Computer ScienceUniversity of BrasíliaBrasíliaBrazil
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations