International Conference on Automated Reasoning with Analytic Tableaux and Related Methods

Automated Reasoning with Analytic Tableaux and Related Methods pp 135-150 | Cite as

Linear Nested Sequents, 2-Sequents and Hypersequents

  • Björn Lellmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)

Abstract

We introduce the framework of linear nested sequent calculi by restricting nested sequents to linear structures. We show the close connection between this framework and that of 2-sequents, and provide linear nested sequent calculi for a number of modal logics as well as for intuitionistic logic. Furthermore, we explore connections to backwards proof search for sequent calculi and to the hypersequent framework, including a reinterpretation of various hypersequent calculi for modal logic S5 in the linear nested sequent framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: From Foundations to Applications, Clarendon (1996)Google Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  3. 3.
    Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ciabattoni, A., Gabbay, D.M., Olivetti, N.: Cut-free proof systems for logics of weak excluded middle. Soft Computing 2(4), 147–156 (1999)CrossRefGoogle Scholar
  5. 5.
    Ciabattoni, A., Ferrari, M.: Hypertableau and path-hypertableau calculi for some families of intermediate logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 160–174. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163(3), 291–313 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame Journal of Formal Logic 55(1), 41–61 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L.S. (eds.) AiML 9, pp. 279–299. College Publications (2012)Google Scholar
  9. 9.
    Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)MATHGoogle Scholar
  10. 10.
    Kurokawa, H.: Hypersequent calculus for intuitionistic logic with classical atoms. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 318–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Lahav, O.: From frame properties to hypersequent rules in modal logics. In: LICS 2013 (2013)Google Scholar
  12. 12.
    Lellmann, B.: Axioms vs hypersequent rules with context restrictions: Theory and applications. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 307–321. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In: Goré, R., Kooi, B.P., Kurucz, A. (eds.) AiML 10, pp. 387–406. College Publications (2014)Google Scholar
  14. 14.
    Martini, S., Masini, A.: A computational interpretation of modal proofs. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 213–241. Kluwer (1996)Google Scholar
  15. 15.
    Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Aplied Logic 58, 229–246 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Masini, A.: 2-sequent calculus: Intuitionism and natural deduction. J. Log. Comput. 3(5), 533–562 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mints, G.: Sistemy lyuisa i sistema T (Supplement to the Russian translation). In: Feys, R. (ed.) Modal Logic, pp. 422–509. Nauka, Moscow (1974)Google Scholar
  18. 18.
    Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb. Log. 1(1), 3–15 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinkowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, vol. 28, pp. 31–51. Springer (2009)Google Scholar
  21. 21.
    Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic, vol. 32. Springer (2010)Google Scholar
  22. 22.
    Pottinger, G.: Uniform, cut-free formulations of T, S4 and S5 (abstract). J. Symb. Logic 48(3), 900 (1983)Google Scholar
  23. 23.
    Ramanayake, R.: Non-commutative classical arithmetical sequent calculi are intuitionistic (2015), accepted for publication in the Special issue of the Logic Journal of the IGPL: ISRALOG’14 post-proceedingsGoogle Scholar
  24. 24.
    Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Dimitracopoulos, C., Newelski, L., Normann, D. (eds.) Logic Colloquium 2005. Lecture Notes in Logic, vol. 28, pp. 151–172. Cambridge University Press (2007)Google Scholar
  25. 25.
    Tatsuta, M.: Non-commutative first-order sequent calculus. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 470–484. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press (2000)Google Scholar
  27. 27.
    Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol, vol. 8, Springer (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Björn Lellmann
    • 1
  1. 1.Department of Computer LanguagesTU WienViennaAustria

Personalised recommendations