Invited Talk: Coherentisation of First-Order Logic

  • Roy Dyckhoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)


This talk explores the relationship between coherent (aka “geometric”) logic and first-order logic FOL, with special reference to the coherence/geometricity required of accessibility conditions in Negri’s work on modal logic (and our work with her on intermediate logic). It has been known to some since the 1970s that every first-order theory has a coherent conservative extension, and weaker versions of this result have been used in association with the automation of coherent logic; but, it is hard to find the result in the literature. We discuss various proofs of the result, and present a coherentisation algorithm with the desirable property of being idempotent. An announcement was in [7]; details can be found in [8].


coherent logic accessibility conditions modal logic intermediate logic automated reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonius, W.: Théories cohérentes et prétopos, Thèse de Maitrise, Université de Montréal (1975)Google Scholar
  2. 2.
    Berghofer, S.: Implementation of a coherent logic prover for Isabelle. In: ACL 2008 Workshop (2008),
  3. 3.
    Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bezem, M., Hendricks, D.: On the mechanization of the proof of Hessenberg’s Theorem in coherent logic. J. Autom. Reasoning 40, 61–85 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourhis, P., Morak, M., Pieris, A.: Towards efficient reasoning under guarded-based disjunctive existential rules. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 99–110. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Arch. for Math. Logic 51, 71–92 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dyckhoff, R., Negri, S.: Coherentisation of accessibility conditions in labelled sequent calculi. In: GSB Workshop, Vienna Summer of Logic (2014)Google Scholar
  8. 8.
    Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symbol. Logic 21, 123–163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fisher, J., Bezem, M.: Skolem machines. Fundamenta Informaticae 91, 79–103 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gogacz, T., Marcinkowski, J.: All–Instances termination of Chase is undecidable. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 293–304. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Holen, B., Hovland, D., Giese, M.: Efficient rule-matching for hyper-tableaux. In: Proc. 9th International Workshop on Implementation of Logics, EasyChair Proceedings in Computing Series, vol. 22, pp. 4–17. Easychair (2013)Google Scholar
  12. 12.
    Johnstone, P.T.: Sketches of an elephant, a topos theory compendium: I and II. Oxford Logic Guides, vols. 43, 44. OUP (2002)Google Scholar
  13. 13.
    Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems of rules. J. Logic & Computation (2014),
  15. 15.
    de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Polonsky, A.: Proofs, types, and lambda calculus. PhD thesis, Univ. Bergen (2010)Google Scholar
  17. 17.
    Stojanović, S., Pavlović, V., Janičić, P.: A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS, vol. 6877, pp. 201–220. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theorem über dichte Mengen. Skrifter I, vol. 4, pp. 1–36. Det Norske Videnskaps-Akademi (1920)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of St AndrewsSt AndrewsUK

Personalised recommendations