Skip to main content

Efficient Power-Aware Resource Constrained Scheduling and Execution for Planetary Rovers

  • Conference paper
  • First Online:
AI*IA 2015 Advances in Artificial Intelligence (AI*IA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9336))

Included in the following conference series:

Abstract

This paper presents and evaluates an integrated power-aware, model-based autonomous control architecture for managing the execution of rover actions in the context of planetary mission exploration. The proposed solution is embedded within an application scenario of reference which consists on a rover-based mission concept aimed at collecting Mars samples that may be returned to Earth at a later date for further investigation. This study elaborates on the exploitation of advanced decision-making capabilities within a flexible execution process targeted at generating and safely executing scheduling solutions representing mission plans, seamlessly supporting online plan optimization and dynamic management of new incoming activities. In this work, an experimental analysis on the performance of the control architecture’s capabilities is presented, throughout two representative cases of study running upon an integrated test-bed platform built on top of the 3DROV ESA planetary rover simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baglioni, P., Fisackerly, R., Gardini, B., Giafiglio, G., Pradier, A., Santovincenzo, A., Vago, J., Van Winnendael, M.: The Mars Exploration Plans of ESA (The ExoMars Mission and the Preparatory Activities for an International Mars Sample Return Mission). IEEE Robotics & Automation Magazine 13(2), 83–89 (2006)

    Article  Google Scholar 

  2. Bresina, J.L., Jonsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the mars exploration rovers. In: ICAPS, Monterey, California, USA, pp. 40–49. AAAI (2005)

    Google Scholar 

  3. Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini, S., Oddi, A., Policella, N., Rabenau, E., Schulster, J.: Mexar2: AI Solves Mission Planner Problems. IEEE Intelligent Systems 22(4), 12–19 (2007)

    Article  Google Scholar 

  4. Cesta, A., Oddi, A., Smith, S.F.: A Constraint-Based Method for Project Scheduling with Time Windows. J. Heuristics 8(1), 109–136 (2002)

    Article  MATH  Google Scholar 

  5. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castaño, R., Davies, A., Mandl, D., Frye, S., Trout, B., D’Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet, A., Christa, S.: Lessons learned from autonomous sciencecraft experiment. In: Fourth International Joint Conference on AAMAS, pp. 11–18. ACM, New York (2005)

    Google Scholar 

  6. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davies, A., Lee, R., M, D., Frye, S., Trout, B., Hengemihle, J., Shulman, S., Ungar, S., Brakke, T.: The EO-1 autonomous science agent. In: AAMAS, New York City, NY, USA (2004)

    Google Scholar 

  7. Coles, A., Coles, A., Fox, M., Long, D.: A Hybrid LP-RPG Heuristic for Modelling Numeric Resource Flows in Planning. J. Artif. Int. Res. 46(1), 343–412 (2013). http://dl.acm.org/citation.cfm?id=2512538.2512548

    MathSciNet  MATH  Google Scholar 

  8. Conrad, P.R., Williams, B.: Drake: An Efficient Executive for Temporal Plans with Choice (January 2014). ArXiv e-prints

    Google Scholar 

  9. Diaz, D., Moreno, M.D., Cesta, A., Oddi, A., Rasconi, R.: Efficient Energy Management for Autonomous Control in Rover Missions. IEEE Computational Intelligence Magazine, Special Issue on Computational Intelligence for Space Systems and Operations 8, 12–24 (2013)

    Article  Google Scholar 

  10. Ghallab, M., Nau, D., Traverso, P.: The actor’s view of automated planning and acting: A position paper. Artificial Intelligence 208, 1–17 (2014). http://www.sciencedirect.com/science/article/pii/S0004370213001173

    Article  Google Scholar 

  11. Ingrand, F., Lacroix, S., Lemai-Chenevier, S., Py, F.: Decisional autonomy of planetary rovers. J. Field Robotics 24(7), 559–580 (2007)

    Article  Google Scholar 

  12. Maimone, M.W., Leger, P.C., Biesiadecki, J.J.: Overview of the mars exploration rovers autonomous mobility and vision capabilities. In: IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy (2007)

    Google Scholar 

  13. Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B., Wilcox, B.: Experiences with operations and autonomy of the mars pathfinder microrover. In: IEEE Aerospace Conference, Snowmass, CO, USA (1998)

    Google Scholar 

  14. Murphy, R.R.: Introduction to AI Robotics. MIT Press (2000)

    Google Scholar 

  15. Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote Agents: To Boldly Go Where No AI Systems Has Gone Before. Artificial Intelligence 103(1–2), 5–48 (1998)

    Article  MATH  Google Scholar 

  16. Nayak, P.P., Kurien, J., Dorais, G., Millar, W., Rajan, K., Kanefsky, R., Bernard, E.D., Gamble Jr., E.B., Rouquette, N., Smith, D.B., Tung, Y.W., Muscoletta, N., Taylor, W.: Validating the DS1 remote agent experiment. In: International Conference on Artificial Intelligence, Beijing, China, vol. 440 (1999)

    Google Scholar 

  17. Poulakis, P., Joudrier, L., Wailliez, S., Kapellos, K.: 3DROV: a planetary rover system design, simulation and verification tool. In: 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, USA (2008)

    Google Scholar 

  18. Putz, P., Elfving, A.: Control Techniques 2, Automation and Robotics Control Development Methodology Definition Report. Tech. Rep. ESA CT2/CDR/DO (1992)

    Google Scholar 

  19. Rasconi, R., Cesta, A., Policella, N.: Validating scheduling approaches against executional uncertainty. Journal of Intelligent Manufacturing 21(1), 49–64 (2010). http://dx.doi.org/10.1007/s10845-008-0172-7

    Article  Google Scholar 

  20. Smith, S.F.: Is scheduling a solved problem? In: Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, pp. 11–20, August 13–16, 2003

    Google Scholar 

  21. Wettergreen, D., Cabrol, N., Teza, J., Tompkins, P., Urmson, C., Verma, V., Wagner, M., Whittaker, W.: First experiments in the robotic investigation of life in the Atacama Desert of Chile. In: International Conerence on Robotics and Automation, Barcelona, Spain, pp. 9–12890 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rasconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Díaz, D., Cesta, A., Oddi, A., Rasconi, R., Rodriguez-Moreno, M.D. (2015). Efficient Power-Aware Resource Constrained Scheduling and Execution for Planetary Rovers. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds) AI*IA 2015 Advances in Artificial Intelligence. AI*IA 2015. Lecture Notes in Computer Science(), vol 9336. Springer, Cham. https://doi.org/10.1007/978-3-319-24309-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24309-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24308-5

  • Online ISBN: 978-3-319-24309-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics