Advertisement

Extremal problems for cycles in graphs

  • Jacques Verstraëte
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 159)

Abstract

In this survey we consider extremal problems for cycles of prescribed lengths in graphs. The general extremal problem is cast as follows: if \(\mathcal{C}\) is a set of cycles, determine the largest number of edges \(\mathrm{ex}(n,\mathcal{C})\) in an n-vertex graph containing no cycle from \(\mathcal{C}\). The survey contains short proofs of various known theorems, including the even cycle theorem of Erdős and Bondy and Simonovits. We also give proofs of new results and conjectures of Erdős on cycles, for instance, we find new sufficient conditions for cycles of length modulo k and for long cycles in triangle-free graphs of large chromatic number. We also review proofs of some conjectures of Erdős on the distribution of the lengths of cycles in graphs, as well as related problems on chromatic number and girth, counting graphs without short cycles, and extensions to cycles in uniform hypergraphs. Throughout the survey, we include a number of conjectures and open problems.

Keywords

Turán numbers Zarankiewicz numbers Even cycle theorem Chromatic number Hypergraph cycles 

Mathematics Subject Classification (2010):

05C35 05C38 05C15 

Notes

Acknowledgements

Research of the author Jacques Verstraëte was supported by NSF Grant DMS-1362650.

References

  1. 1.
    P. Allen, P. Keevash, B. Sudakov, J. Verstraëte, Turán numbers of bipartite graphs plus an odd cycle. J. Comb. Theory Ser. B 106, 134–162 (2014)CrossRefMATHGoogle Scholar
  2. 2.
    N. Alon, C. Shikhelman, Triangles in H-free graphs. arxiv.org/abs/1409.4192Google Scholar
  3. 3.
    N. Alon, S. Hoory, N. Linial, The Moore bound for irregular graphs. Graphs Comb. 18(1), 53–57 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Balogh, R. Morris, W. Samotij, Independent sets in hypergraphs. J. Am. Math. Soc. 28(3), 669–709 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C.T. Benson, Minimal regular graphs of girths eight and twelve. Can. J. Math. 18, 1091–1094 (1966)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Beutelspacher, U. Rosenbaum, Projective Geometry: From Foundations to Applications (Cambridge University Press, Cambridge, 1998)MATHGoogle Scholar
  7. 7.
    T. Bohman, P. Keevash, Dynamic concentration of the triangle-free process. arxiv.org/abs/1302.5963Google Scholar
  8. 8.
    B. Bollobás, Cycles modulo k. Bull. Lond. Math. Soc. 9, 97–98 (1977)Google Scholar
  9. 9.
    B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978)MATHGoogle Scholar
  10. 10.
    B. Bollobás, E. Györi, Pentagons vs. triangles. Discret. Math. 308(19), 4332–4336 (2008)Google Scholar
  11. 11.
    J.A. Bondy, Basic graph theory: paths and circuits, in Handbook of Combinatorics, vol. I (Elsevier, Amsterdam, 1995), pp. 3–110Google Scholar
  12. 12.
    J.A. Bondy, M. Simonovits, Cycles of even length in graphs. J. Comb. Theory Ser. B 16, 97–105 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J.A. Bondy, A. Vince, Cycles in a graph whose lengths differ by one or two. J. Graph Theory 27(1), 11–15 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R.C. Bose, S. Chowla, Theorems in the additive theory of numbers. Math. Helvet. 37, 141–147 (1962/1963)Google Scholar
  15. 15.
    B. Bukh, Z. Jiang, A bound on the number of edges in graphs without an even cycle. arxiv.org/pdf/1403.1601v1.pdfGoogle Scholar
  16. 16.
    Y. Caro, Y. Li, C. Rousseau, Y. Zhang, Asymptotic bounds for some bipartite graph-complete graph Ramsey numbers. Discret. Math. 220, 51–56 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    G.T. Chen, A. Saito, Graphs with a cycle of length divisible by three. J. Comb. Theory Ser. B 60, 277–292 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    F.R.K. Chung, R.L. Graham, Erdős on Graphs: His Legacy of Unsolved Problems (A K Peters, Wellesley, 1998)MATHGoogle Scholar
  19. 19.
    C.R.J. Clapham, A. Flockart, J. Sheehan, Graphs without four-cycles. J. Graph Theory 13, 29–47 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    C. Collier, C.N. Graber, T. Jiang, Linear Turán numbers of r-uniform linear cycles and related Ramsey numbers. arxiv.org/abs/1404.5015Google Scholar
  21. 21.
    D. Conlon, Graphs with few paths of prescribed length between any two vertices. arxiv.org/pdf/1411.0856v1.pdfGoogle Scholar
  22. 22.
    D. Conlon, An extremal theorem in the hypercube. Electron. J. Comb. 17(1), 7 (2010). Research Paper 111Google Scholar
  23. 23.
    R. Damerell, On Moore geometries. II. Math. Proc. Camb. Philos. Soc. 90(1), 33–40 (1981)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    S. Das, C. Lee, B. Sudakov, Rainbow Turán problem for even cycles. Eur. J. Comb. 34, 905–915 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    N. Dean, A. Kaneko, K. Ota, B. Toft, Cycles modulo 3. DIMACS Technical Report 91–32 (1991)Google Scholar
  26. 26.
    N. Dean, L. Lesniak, A. Saito, Cycles of length 0 modulo 4 in graphs. Discret. Math. 121, 37–49 (1993)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    D. de Caen, L. Székely, The maximum size of 4- and 6-cycle free bipartite graphs on m, n vertices, in Sets, Graphs and Numbers, Budapest, 1991. Colloquia Mathematica Societatis János Bolyai, vol. 60 (North-Holland, Amsterdam, 1992), pp. 135–142Google Scholar
  28. 28.
    A. Diwan, Cycles of even lengths modulo k. J. Graph Theory 65(3), 246–252 (2010)Google Scholar
  29. 29.
    M.N. Ellingham, D.K. Menser, Girth, minimum degree, and circumference. J. Graph Theory 34(3), 221–233 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    D. Ellis, N. Linial, On regular hypergraphs of high girth. Electron. J. Comb. 21(1), 17 (2014). Paper 1.54Google Scholar
  31. 31.
    P. Erdős, On sequences of integers no one of which divides the product of two others and on some related problems. Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk 2, 74–82 (1938)MATHGoogle Scholar
  32. 32.
    P. Erdős, Graph theory and probability. Can. J. Math. 11, 34–38 (1959)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    P. Erdős, Problems and results in combinatorial analysis and graph theory, in Proof Techniques in Graph Theory (Academic Press, New York, 1969), pp. 27–35Google Scholar
  34. 34.
    P. Erdős, Some recent progress on extremal problems in graph theory. Congr. Numer. 14, 3–14 (1975)MathSciNetMATHGoogle Scholar
  35. 35.
    P. Erdős, Some old and new problems in various branches of combinatorics, in Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, 1979, vol. 1. Congressus Numerantium, vol. 23 (1979), pp. 19–38Google Scholar
  36. 36.
    P. Erdős, Some of my favourite unsolved problems, in A Tribute to Paul Erdős, ed. by A. Baker, B. Bollobás, A. Hajnal (Cambridge University Press, Cambridge, 1990), pp. 467–468CrossRefGoogle Scholar
  37. 37.
    P. Erdős, Some of my favorite solved and unsolved problems in graph theory. Quaest. Math. 16, 333–350 (1993)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    P. Erdős, Some old and new problems in various branches of combinatorics, in Graphs and Combinatorics (Marseille, 1995). Discrete Mathematics, vol. 165/166 (1997), pp. 227–231Google Scholar
  39. 39.
    P. Erdős, T. Gallai, On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    P. Erdős, A. Hajnal, On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hung. 17, 61–99 (1966)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    P. Erdős, M. Simonovits, Compactness results in extremal graph theory. Combinatorica 2(3), 275–288 (1982)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    P. Erdős, A.H. Stone, On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 (1946)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    P. Erdős, P. Turán, On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. 16, 212–216 (1941)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory. Stud. Sci. Math. Hung. 1, 215–235 (1966)MathSciNetMATHGoogle Scholar
  45. 45.
    P. Erdős, A. Hajnal, S. Shelah, Topics in Topology (Proc. Colloq. Keszthely, 1972). Colloquia Mathematica Societatis János Bolyai, vol. 8 (North-Holland, Amsterdam, 1974), pp. 243–245Google Scholar
  46. 46.
    P. Erdős, R. Faudree, C. Rousseau, R. Schelp, On cycle-complete graph Ramsey numbers. J. Graph Theory 2, 53–64 (1978)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    P. Erdős, R.J. Faudree, C. Rousseau, R. Schelp, The number of cycle lengths in graphs of given minimum degree and girth. Discret. Math. 200, 55–60 (1999)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    G. Fan, Distribution of cycle lengths in graphs. J. Comb. Theory Ser. B 84, 187–202 (2002)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    R.J. Faudree, M. Simonovits, On a class of degenerate extremal graph problems. Combinatorica 3, 83–93 (1983)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    F.A. Firke, P.M. Kosek, E.D. Nash, J. Williford, Extremal graphs without 4-cycles. arxiv.org/pdf/1201.4912v1.pdfGoogle Scholar
  51. 51.
    P. Fischer, J. Matoušek, A lower bound for families of Natarajan dimension d. J. Comb. Theory Ser. A 95(1), 189–195 (2001)Google Scholar
  52. 52.
    G. Fiz Pontiveros, S. Griffiths, R. Morris, The triangle-free process and R(3, k). arxiv.org/abs/1302.6279Google Scholar
  53. 53.
    F. Foucaud, M. Krivelevich, G. Perarnau, Large subgraphs without short cycles. SIAM J. Discret. Math. 29(1), 65–78 (2015)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Z. Füredi, Quadrilateral-free graphs with maximum number of edges. www.math.uiuc.edu/~z-furedi/PUBS/furediC4from1988.pdf (1988, preprint)
  55. 55.
    Z. Füredi, T. Jiang, Hypergraph Turán numbers of linear cycles. arXiv:1302.2387Google Scholar
  56. 56.
    Z. Füredi, L. Özkahya, On 3-uniform hypergraphs without a cycle of given length. arxiv.org/pdf/1412.8083.pdfGoogle Scholar
  57. 57.
    Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems. arxiv.org/pdf/1306.5167.pdfGoogle Scholar
  58. 58.
    Z. Füredi, A. Naor, J. Verstraëte, On the Turán number for the hexagon. Adv. Math. 203(2), 476–496 (2006)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    D.K. Garnick, Y.H.H. Kwong, F. Lazebnik, Extremal graphs without three-cycles or four-cycles. J. Graph Theory 17(5), 633–645 (1993)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    C. Godsil, G. Royle, Algebraic Graph Theory (Springer, New York, 2001)CrossRefMATHGoogle Scholar
  61. 61.
    A. Gyárfás, Graphs with k odd cycle lengths. Discret. Math. 103, 41–48 (1992)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    A. Gyárfás, J. Komlós, E. Szemerédi, On the distribution of cycle lengths in graphs. J. Graph Theory 8(4), 441–462 (1984)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    A. Gyárfás, H.J. Prömel, E. Szemerédi, M. Voigt, On the sum of the reciprocals of cycle lengths in sparse graphs. Combinatorica 5(1), 41–52 (1986)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    E. Györi, C 6-free bipartite graphs and product representation of squares, in Graphs and Combinatorics (Marseille, 1995). Discrete Mathematics, vol. 165/166 (1997), pp. 371–375Google Scholar
  65. 65.
    E. Györi, Triangle-free hypergraphs. Comb. Probab. Comput. 15(1–2), 185–191 (2006)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    E. Györi, N. Lemons, Hypergraphs with no cycle of a given length. Comb. Probab. Comput. 21(1–2), 193–201 (2012)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    A. Hoffman, R. Singleton, On Moore graphs with diameters 2 and 3. IBM J. Res. Develop. 4, 497–504 (1960)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    S. Hoory, The size of bipartite graphs with a given girth. J. Comb. Theory Ser. B 86(2), 215–220 (2002)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    C. Hyltén-Cavallius, On a combinatorial problem. Colloq. Math. 6, 59–65 (1958)MathSciNetMATHGoogle Scholar
  70. 70.
    R. Häggkvist, A. Scott, Arithmetic progressions of cycles (Preprint)Google Scholar
  71. 71.
    P. Keevash, D. Mubayi, B. Sudakov, J. Verstraëte, On a conjecture of Erdős and Simonovits: even cycles. Combinatorica 33, 699–732 (2013)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    J. Kim, The Ramsey number R(3; t) has order of magnitude \(t^{2}/\log t\). Random Struct. Algorithm. 7, 173–207 (1995)Google Scholar
  73. 73.
    D. Kleitman, K. Winston, On the number of graphs without 4-cycles. Discret. Math. 41, 167–172 (1982)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    G.N. Kopylov, On maximal path and cycles in a graph. Dokl. Akad. Nauk SSSR 234, 19–21 (1977) [Soviet Math. Dokl. 18, 593–596, 1977]Google Scholar
  75. 75.
    A.V. Kostochka, D. Mubayi, J. Verstraëte, Turán problems and shadows I: paths and cycles. J. Comb. Theory Ser. A 129, 57–79 (2015)CrossRefMATHGoogle Scholar
  76. 76.
    A.V. Kostochka, B. Sudakov, J. Verstraëte, Cycles in triangle-free graphs of large chromatic number (to appear)Google Scholar
  77. 77.
    T. Kövari, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)MATHGoogle Scholar
  78. 78.
    M. Krivelevich, B. Sudakov, Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42, 17–33 (2003)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    D. Kühn, D. Osthus, Every graph of sufficiently large average degree contains a C 4-free subgraph of large average degree. Combinatorica 24, 155–162 (2004)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    D. Kühn, D. Osthus, Four-cycles in graphs without a given even cycle. J. Graph Theory 48, 147–156 (2005)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    T. Lam, J. Verstraëte, A note on graphs without short even cycles. Electron. J. Comb. 12, Note 5, 6 (2005)Google Scholar
  82. 82.
    C.-H. Liu, J. Ma, Cycle lengths and minimum degree of graphs, arXiv:1508.07912Google Scholar
  83. 83.
    L. Lovász, On chromatic number of finite set-systems. Acta Math. Acad. Sci. Hung. 19, 59–67 (1968)MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    L. Lovász, Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A 25(3), 319–324 (1978)CrossRefMATHGoogle Scholar
  85. 85.
    L. Lovász, Combinatorial Problems and Exercises, 2nd edn. (North-Holland, Amsterdam, 1993)MATHGoogle Scholar
  86. 86.
    A. Lubotsky, M. Phillips, P. Sarnak, Ramanujan graphs. Combinatorica 9, 261–277 (1988)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    F. Lazebnik, J. Verstraëte, On hypergraphs of girth five. Electron. J. Comb. 10, Research Paper 25, 15 (2003)Google Scholar
  88. 88.
    F. Lazebnik, V.A. Ustimenko, A.J. Woldar, New constructions of Bipartite graphs on m, n vertices, with many edges, and without small cycles. J. Comb. Theory Ser. B 61(1), 111–117 (1994)Google Scholar
  89. 89.
    F. Lazebnik, V.A. Ustimenko, A.J. Woldar, New upper bounds on the order of cages. Electron. J. Comb. 14(R13), 1–11 (1997)MathSciNetMATHGoogle Scholar
  90. 90.
    F. Lazebnik, V.A. Ustimenko, A.J. Woldar, Polarities and 2k-cycle-free graphs. Discret. Math. 197/198, 503–513 (1999)Google Scholar
  91. 91.
    J. Ma, Cycles with consecutive odd lengths. arxiv.org/pdf/1410.0430v1.pdfGoogle Scholar
  92. 92.
    W. Mader, Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend großer Kantendichte. Math. Ann. 194, 295–312 (1971)MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    G. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Probl. Inform. Transm. 24, 39–46 (1988)MathSciNetMATHGoogle Scholar
  94. 94.
    K.E. Mellinger, D. Mubayi, Constructions of bipartite graphs from finite geometries. J. Graph Theory 49(1) 1–10 (2005)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    P. Mihók, I. Schiermeyer, Cycle lengths and chromatic number of graphs. Discret. Math. 286, 147–149 (2004)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    K. Milans, D. Rautenbach, F. Pfender, F. Regen, D. West, The cycle spectra of Hamiltonian graphs. J. Comb. Theory Ser. B 102(4), 869–874 (2012)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    R. Morris, D. Saxton, The number of C 2-free graphs. arxiv.org/pdf/1309.2927v2.pdfGoogle Scholar
  98. 98.
    M. Mörs, A new result on the problem of Zarankiewicz. J. Comb. Theory Ser. A 31(2), 126–130 (1981)MathSciNetCrossRefGoogle Scholar
  99. 99.
    D. Mubayi, Personal communicationGoogle Scholar
  100. 100.
    D. Mubayi, J. Williford, On the independence number of the Erdős-Rényi and projective Norm graphs and a related hypergraph. J. Graph Theory 56(2), 113–127 (2007)MathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    A. Naor, J. Verstraëte, A note on bipartite graphs without 2k-cycles. Comb. Probab. Comput. 14(5–6), 845–849 (2005)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    K. O’Bryant, A complete annotated bibliography of work related to Sidon sequences. Electron. J. Comb. 11, Dynamic Survey 39 (2004)Google Scholar
  103. 103.
    A. Odlyzko, W. D. Smith, Nonabelian sets with distinct k-sums. Discret. Math. 146(1–3), 169–177 (1995)MathSciNetCrossRefMATHGoogle Scholar
  104. 104.
    T.D. Parsons, Graphs from projective planes. Aequationes Math. 14, 167–189 (1976)MathSciNetCrossRefMATHGoogle Scholar
  105. 105.
    O. Pikhurko, A note on the Turán function of even cycles. Proc. Am. Math. Soc. 140(11), 3687–3692 (2012)MathSciNetCrossRefMATHGoogle Scholar
  106. 106.
    L. Pósa, Hamiltonian circuits in random graphs. Discret. Math. 14, 359–364 (1976)MathSciNetCrossRefMATHGoogle Scholar
  107. 107.
    I. Reiman, Über ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci. Hung. 9, 269–278 (1958)MathSciNetCrossRefMATHGoogle Scholar
  108. 108.
    V. Rödl, On the chromatic number of subgraphs of a given graph. Proc. Am. Math. Soc. 64, 370–371 (1977)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    P. Rowlinson, Y. Yuansheng, On extremal graphs without four-cycles. Utilitas Math. 41, 204–210 (1992)MathSciNetMATHGoogle Scholar
  110. 110.
    I. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics. Proceedings of the Fifth Hungarian Colloquium (Keszthely, 1976), vol. II, pp. 939–945. Colloquia Mathematica Societatis János Bolyai, vol. 18 (North-Holland, Amsterdam/New York, 1978)Google Scholar
  111. 111.
    H. Sachs, M. Stiebitz, On constructive methods in the theory of colour-critical graphs. Discret. Math. 74(1–2), 201–226 (1989)MathSciNetCrossRefMATHGoogle Scholar
  112. 112.
    D. Saxton, A. Thomason, Hypergraph containers. arxiv.org/pdf/1204.6595.pdfGoogle Scholar
  113. 113.
    A. Scott, Szemerédi’s Regularity Lemma for matrices and sparse graphs. Comb. Probab. Comput. 20, 455–466 (2011)CrossRefMATHGoogle Scholar
  114. 114.
    J. Shearer, A note on the independence number of triangle-free graphs. Discret. Math. 46(1), 83–87 (1983)MathSciNetCrossRefMATHGoogle Scholar
  115. 115.
    J. Shearer, A note on the independence number of triangle-free graphs, II. J. Comb. Theory Ser. B 53(2), 300–307 (1991)MathSciNetCrossRefMATHGoogle Scholar
  116. 116.
    J. Singer, A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938)MathSciNetCrossRefMATHGoogle Scholar
  117. 117.
    J. Solymosi, C 4 Removal Lemma for sparse graphs, in Open Problem Session. Mathematisches Forschungsinstitut Oberwolfach, Report No. 01/2011 Combinatorics (2011). doi:10.4171/OWR/2011/01Google Scholar
  118. 118.
    B. Sudakov, A note on odd cycle-complete graph Ramsey numbers. Electron. J. Comb. 9(1), Note 1, 4 (2002)Google Scholar
  119. 119.
    B. Sudakov, J. Verstraëte, Cycle lengths in sparse graphs. Combinatorica 28(3), 357–372 (2008)MathSciNetCrossRefMATHGoogle Scholar
  120. 120.
    B. Sudakov, J. Verstraëte, Cycles in graphs with large independence ratio. J. Comb. 2, 82–102 (2011)MathSciNetMATHGoogle Scholar
  121. 121.
    M. Tait, C. Timmons, Small dense subgraphs of polarity graphs and the extremal number for the 4-cycle. arxiv.org/pdf/1502.02722.pdfGoogle Scholar
  122. 122.
    C. Thomassen, Cycles in graphs of uncountable chromatic number. Combinatorica 3, 133–134 (1983)MathSciNetCrossRefMATHGoogle Scholar
  123. 123.
    C. Thomassen, Girth in graphs. J. Comb. Theory Ser. B 35, 129–141 (1983)MathSciNetCrossRefMATHGoogle Scholar
  124. 124.
    C. Thomassen, Paths, circuits and subdivisions, in Selected Topics in Graph Theory, vol. 3, ed. by L. Beineke, R. Wilson (Academic Press, New York, 1988), pp. 97–133Google Scholar
  125. 125.
    C. Thomassen, B. Toft, Non-separating induced cycles in graphs. J. Comb. Theory Ser. B 31, 199–224 (1981)MathSciNetCrossRefMATHGoogle Scholar
  126. 126.
    C. Timmons, J. Cilleruelo, k-fold Sidon sets. Electron. J. Comb. 21(4), 12 (2014)Google Scholar
  127. 127.
    C. Timmons, J. Verstraëte, A counterexample to sparse removal. arxiv.org/pdf/1312.2994.pdfGoogle Scholar
  128. 128.
    J. Tits, Sur la trialité et certains groupes qui s’en déduisent. Inst. Hautes Études Sci. Publ. Math. 2, 13–60 (1959)CrossRefMATHGoogle Scholar
  129. 129.
    H. van Maldeghem, Generalized Polygons. Monographs in Mathematics (Birkhäuser, Basel, 1998). http://cage.ugent.be/~fdc/contactforum/vanmaldeghem.pdf
  130. 130.
    V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)CrossRefMATHGoogle Scholar
  131. 131.
    J. Verstraëte, On arithmetic progressions of cycle lengths in graphs. Comb. Probab. Comput. 9, 369–373 (2000)MathSciNetCrossRefMATHGoogle Scholar
  132. 132.
    J. Verstraëte, Unavoidable cycle lengths in graphs. J. Graph Theory 49(2), 151–167 (2005)MathSciNetCrossRefMATHGoogle Scholar
  133. 133.
    J. Verstraëte, J. Williford, Unpublished manuscriptGoogle Scholar
  134. 134.
    R. Wenger, Extremal graphs with no C 4’s, C 6’s, or C 10’s. J. Comb. Theory Ser. B 52(1), 113–116 (1991)MathSciNetCrossRefMATHGoogle Scholar
  135. 135.
    C.Q. Zhang, Circumference and girth. J. Graph Theory 13(4), 485–490 (1989)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations