Skip to main content

Dynamical algebraic combinatorics and the homomesy phenomenon

  • Chapter
  • First Online:
Recent Trends in Combinatorics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

We survey recent work within the area of algebraic combinatorics that has the flavor of discrete dynamical systems, with a particular focus on the homomesy phenomenon codified in 2013 by James Propp and the author. In these situations, a group action on a set of combinatorial objects partitions them into orbits, and we search for statistics that are homomesic, i.e., have the same average value over each orbit. We give a number of examples, many very explicit, to illustrate the wide range of the phenomenon and its connections to other parts of combinatorics. In particular, we look at several actions that can be defined as a product of toggles, involutions on the set that make only local changes. This allows us to lift the well-known poset maps of rowmotion and promotion to the piecewise-linear and birational settings, where periodicity becomes much harder to prove, and homomesy continues to hold. Some of the examples have strong connections with the representation theory of semisimple Lie algebras, and others to cluster algebras via Y -systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Armstrong, C. Stump, H. Thomas, A uniform bijection between nonnesting and noncrossing partitions. Trans. Am. Math. Soc. 365(8), 4121–4151 (2013). Also available as arXiv:1101.1277v2

    Google Scholar 

  2. A. Ayyer, S. Klee, A. Schilling, Combinatorial Markov chains on linear extensions. J. Algebraic Comb. 39(4), 853–881 (2014). Also available at arXiv:1205.7074v3

    Google Scholar 

  3. R. Behrend, T. Roby, Dihedral homomesy for Alternating Sign Matrices, in preparation

    Google Scholar 

  4. J. Bloom, O. Pechenik, D. Saracino, Proofs and generalizations of a homomesy conjecture of Propp and Roby (2013), Disc. Math. 339, 194–206 (2016). arXiv:1308.0546v3

    Google Scholar 

  5. A.E. Brouwer, A. Schrijver, On the Period of an Operator, Defined on Antichains, Math. Center report ZW24, Amsterdam (Jun. 1974), http://www.win.tue.nl/~aeb/preprints/zw24.pdf

  6. P.J. Cameron, D.G. Fon-der-Flaass, Orbits of Antichains Revisited. Eur. J. Comb. 16(6), 545–554 (1995), http://www.sciencedirect.com/science/article/pii/0195669895900365

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Chan, S. Haddadan, S. Hopkins, L. Moci, The expected jaggedness of order ideals (2015), arXiv:1507.00249v1

  8. D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp, S. Rubinstein-salzedo, Noncrossing partitions, toggles, and homomesies, arXiv:1510.06362v1

  9. D. Einstein, J. Propp, Combinatorial, piecewise-linear, and birational homomesy for products of two chains (2013), arXiv:1310.5294

  10. D. Einstein, J. Propp, Piecewise-linear and birational toggling (Extended abstract), DMTCS proceedings of FPSAC 2014 (2014), http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAT0145/4518. Also available at arXiv:1404.3455v1

  11. D.G. Fon-der-Flaass, Orbits of Antichains in Ranked Posets. Eur. J. Comb. 14(1), 17–22 (1993). http://www.sciencedirect.com/science/article/pii/S0195669883710036

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  13. E. Gansner, On the equality of two plane partition correspondences. Discret. Math. 30, 121–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Gardner, Mathematical games: Tasks you cannot help finishing no matter how hard you try to block finishing them. Sci. Am. 249, 12–21 (1983)

    Article  Google Scholar 

  15. R.M. Green, Combinatorics of Minuscule Representations (Cambridge University Press, Cambridge 2013)

    MATH  Google Scholar 

  16. D. Grinberg, T. Roby, The order of birational rowmotion (Extended abstract), DMTCS proceedings of FPSAC 2014, (2014), http://www.dmtcs.org/pdfpapers/dmAT0165.pdf

  17. D. Grinberg, T. Roby, Iterative properties of birational rowmotion I: generalities and skeletal posets. Electron. J. Comb. 23(1), #P1.33 (2016), to appear

    Google Scholar 

  18. D. Grinberg, T. Roby, Iterative properties of birational rowmotion II: rectangles and triangles. Electron. J. Comb. 22(3), #P3.40, (2015). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p40

  19. D. Grinberg, T. Roby, Iterative properties of birational rowmotion (2014), arXiv:1402.6178v4 . (Full version of above papers with detailed proofs)

  20. S. Haddadan, Some instances of homomesy among ideals of posets (2014), arXiv:1410.4819v2

  21. A.E. Holroyd, J. Propp, Rotor walks and Markov chains, in Algorithmic Probability and Combinatorics (American Mathematical Society, Providence, RI, 2010), pp. 105–126

    Book  MATH  Google Scholar 

  22. A.E. Holroyd, L. Levine, K. Meszaros, Y. Peres, J. Propp, D.B. Wilson, Chip-firing and rotor-routing on directed graphs. Prog. Probability 60, 331–364 (2008), Updated version at arXiv:0801.3306v4

  23. B. Hopkins, 30 years of Bulgarian solitaire. Coll. Math. J. 43, #2, 135–140 (2012)

    Google Scholar 

  24. S. Hopkins, I. Zhang, A note on statistical averages for oscillating tableaux. Electron. J. Comb. 22(2), #P2.48 (2015), http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p48. Also at arXiv:1408.6183v1

  25. B. Keller, The periodicity conjecture for pairs of Dynkin diagrams. Ann. Math. 177(1), 111–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. A.N. Kirillov, Introduction to tropical combinatorics, Physics and combinatorics: Proceedings of the Nagoya 2000 International Workshop, held 21 - 26 August 2000 in Nagoya University. ed. by A.N. Kirillov (Nagoya University) & Nadejda Liskova. Published (World Scientific Publishing, Singapore, 2001), pp. 82–150. ISBN #9789812810007

    Google Scholar 

  27. A.N. Kirillov, A.D. Berenstein, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux. Algebra i Analiz 7(1), 92–152 (1995). Preprint available at http://math.uoregon.edu/~arkadiy/bk1.pdf

  28. D.I. Panyushev, On orbits of antichains of positive roots. Eur. J. Comb. 30(2), 586–594 (2009), Also available at arXiv:0711.3353v2

    Google Scholar 

  29. R.A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Comb. 5, 331–350 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Propp, T. Roby, Homomesy in products of two chains. Electron. J. Comb. 22(3), #P3.4, (2015), http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p4. Also available at arXiv:1310.5201v5

  31. J. Propp, T. Roby, Homomesy in Products of Two Chains, (extended abstract) DMTCS proceedings of FPSAC 2013 (2013), http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAS0180/4290

    MATH  Google Scholar 

  32. J. Propp, T. Roby, J. Striker, N. Williams, (organizers), S. Hopkins (notetaker), Notes from the AIM Workshop on Dynamical Algebraic Combinatorics (American Institute of Mathematics, San Jose, 2015), pp. 23–27, http://aimath.org/pastworkshops/dynalgcomb.html, http://mit.edu/~shopkins/docs/aim_dyn_alg_comb_notes.pdf

  33. V. Reiner, D. Stanton, D. White, The cyclic sieving phenomenon. J. Comb. Theory Ser. A 108, 17–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. V. Reiner, D. Stanton, D. White, What is…cyclic sieving?. AMS Notices 61, #2 169–171 (2014)

    Google Scholar 

  35. B. Rhoades, Cyclic sieving, promotion, and representation theory. J. Comb. Theory Ser. A 117(1), 38–76 (2010), http://www.sciencedirect.com/science/article/pii/S0097316509000703 Also available at arXiv:1005.2568v1

    Google Scholar 

  36. D.B. Rush, X. Shi, On orbits of order ideals of minuscule posets. J. Algebraic Comb. 37(3), 545–569 (2013), Also available at arXiv:1108.5245v2

    Google Scholar 

  37. D.B. Rush, K. Wang, On orbits of order ideals of minuscule posets II: Homomesy (2015), arXiv:1509.08047

  38. B.E. Sagan, The Cyclic Sieving Phenomenon: A Survey, London Mathematical Society Lecture Note Series, vol. 392 (Cambridge University Press, Cambridge, 2011). Also available at arXiv:1008.0790v3

  39. W.A. Stein et. al., Sage Mathematics Software (Version 6.2.beta2), The Sage Development Team (2014), http://www.sagemath.org

  40. The Sage-Combinat community, Sage-Combinat: Enhancing Sage as a Toolbox for Computer Exploration in Algebraic Combinatorics (2008), http://combinat.sagemath.org

  41. A. Schilling, N.M. Thiéry, G. White, N. Williams, Braid moves in commutation classes of the symmetric group (2015), arXiv:1507.00656v2

  42. M.-P. Schützenberger, Promotion des morphisms d’ensemble ordonnes. Discret. Math. 2, 73–94 (1972)

    Article  MATH  Google Scholar 

  43. R.P. Stanley, Two poset polytopes. Discret. Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. R.P. Stanley, in Enumerative Combinatorics, Volume 1, 2nd Edition, Cambridge Studies in Advanced Mathematics, vol. 49 (Cambridge University Press, Cambridge, 2011). Also available at http://math.mit.edu/~rstan/ec/ec1/

  45. R.P. Stanley, in Enumerative Combinatorics Volume 2, Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  46. R.P. Stanley, Promotion and evacuation. Electron. J. Comb. 16(2), #R9, (2009), http://www.combinatorics.org/ojs/index.php/eljc/article/download/v16i2r9/pdf

  47. J.R. Stembridge, Trapezoidal chains and antichains. Eur. J. Comb. 7(4), 377–387 (1986), http://www.sciencedirect.com/science/article/pii/S0195669886800099

    Article  MathSciNet  MATH  Google Scholar 

  48. J.R. Stembridge, Minuscule elements of Weyl groups. J. Algebra 235 722–743 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.R. Stembridge, On minuscule representations, plane partitions and involutions in complex lie groups. Duke Math. J. 73(2), 469–490 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions. J. Comb. Theory Ser. A 68, 372–409 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Striker, The toggle group, homomesy, and the Razumov-Stroganov correspondence. Electron. J. Comb. 22(2), #P2.57 (2015), http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p57/3248. Also available at arXiv:1503.08898v1

  52. J. Striker, Rowmotion and generalized toggle groups (2016), arXiv:1601.03710

  53. J. Striker, N. Williams, Promotion and rowmotion. Eur. J. Comb. 33, 1919–1942 (2012), http://www.sciencedirect.com/science/article/pii/S0195669812000972. Also available at arXiv:1108.1172v3

    Google Scholar 

  54. R. Suter, Young’s lattice and dihedral symmetries. Eur. J. Comb. 23, 233–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Thomas, A. Yong, Cominuscule tableau combinatorics (2007), arXiv:0701215v2

  56. A. Toom, Problem solution M655. Kvant (Quantum) 7, 28–30 (1981), http://kvant.mccme.ru/1981/07/p28.htm

    Google Scholar 

  57. A.Y. Volkov, On the periodicity conjecture for Y-systems. Commun. Math. Phys. 276, 509–517 (2007). Preprint also available, under the name On Zamolodchikov’s Periodicity Conjecture, at arXiv:hep-th/0606094v1

    Google Scholar 

  58. L. Williams, Cluster algebras: an introduction. Bull. AMS 51(1), 1–26 (2014), http://www.ams.org/journals/bull/2014-51-01/S0273-0979-2013-01417-4/S0273-0979-2013-01417-4.pdf.

    Article  MathSciNet  MATH  Google Scholar 

  59. N. Williams, Cataland, Dissertation, University of Minnesota, 2013, https://conservancy.umn.edu/bitstream/159973/1/Williams_umn_0130E_14358.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Roby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roby, T. (2016). Dynamical algebraic combinatorics and the homomesy phenomenon. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_25

Download citation

Publish with us

Policies and ethics