Skip to main content

Ajtai–Szemerédi Theorems over quasirandom groups

  • Chapter
  • First Online:
Recent Trends in Combinatorics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

Two versions of the Ajtai–Szemerédi Theorem are considered in the Cartesian square of a finite non-abelian group G. In case G is sufficiently quasirandom, we obtain strong forms of both versions: if \(E \subseteq G \times G\) is fairly dense, then E contains a large number of the desired patterns for most individual choices of ‘common difference’. For one of the versions, we also show that this set of good common differences is syndetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ajtai, E. Szemerédi, Sets of lattice points that form no squares. Stud. Sci. Math. Hung. 9, 9–11 (1974/1975)

    Google Scholar 

  2. T. Austin, Quantitative equidistribution for certain quadruples in quasi-random groups: Erratum. Comb. Probab. Comput. http://dx.doi.org/10.1017/S0963548315000243 (the print version hasn’t appeared yet).

  3. T. Austin, Quantitative equidistribution for certain quadruples in quasi-random groups. Comb. Probab. Comput. 24(2), 376–381 (2015). doi:10.1017/S0963548314000492. http://dx.doi.org/10.1017/S0963548314000492

    Article  MathSciNet  Google Scholar 

  4. V. Bergelson, R. McCutcheon, Central sets and a non-commutative Roth theorem. Am. J. Math. 129(5), 1251–1275 (2007). doi:10.1353/ajm.2007.0031. http://dx.doi.org/10.1353/ajm.2007.0031

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Bergelson, T. Tao, Multiple recurrence in quasirandom groups. Geom. Funct. Anal. 24(1), 1–48 (2014). doi:10.1007/s00039-014-0252-0. http://dx.doi.org/10.1007/s00039-014-0252-0

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Bergelson, R. McCutcheon, Q. Zhang, A Roth theorem for amenable groups. Am. J. Math. 119(6), 1173–1211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Bergelson, D. Robertson, P. Zorin-Kranich, Triangles in Cartesian squares of quasirandom groups. Available online at arXiv.org: 1410.5385 (preprint)

    Google Scholar 

  8. T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups (Springer, New York, 1985)

    Google Scholar 

  9. Q. Chu, Convergence of weighted polynomial multiple ergodic averages. Proc. Am. Math. Soc. 137, 1363–1369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q. Chu, P. Zorin-Kranich, Lower bound in the Roth Theorem for amenable groups. Ergod. Theory Dyn. Syst. 35(6), 1746–1766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Erdős, E.G. Straus, How abelian is a finite group? Linear Multilinear Algebra 3(4), 307–312 (1975/1976)

    Google Scholar 

  12. A. Frieze, R. Kannan, Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999). doi:10.1007/s004930050052. http://dx.doi.org/10.1007/s004930050052

    Article  MathSciNet  MATH  Google Scholar 

  13. W.T. Gowers, Quasirandom groups. Comb. Probab. Comput. 17(3), 363–387 (2008). doi:10.1017/S0963548307008826. http://dx.doi.org/10.1017/S0963548307008826

    Article  MathSciNet  MATH  Google Scholar 

  14. W.T. Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010). doi:10.1112/blms/bdq018. http://dx.doi.org/10.1112/blms/bdq018

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Pyber, How abelian is a finite group? in The Mathematics of Paul Erdős, I. Algorithms and Combinatorics, vol. 13 (Springer, Berlin, 1997), pp. 372–384. doi:10.1007/978-3-642-60408-9_27. http://dx.doi.org/10.1007/978-3-642-60408-9_27

    Google Scholar 

  16. R.A. Ryan, Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics (Springer, London, 2002). doi:10.1007/978-1-4471-3903-4. http://dx.doi.org/10.1007/978-1-4471-3903-4

    Google Scholar 

  17. R. Schatten, A Theory of Cross-Spaces. Annals of Mathematics Studies, vol. 26 (Princeton University Press, Princeton, 1950)

    Google Scholar 

  18. I.D. Shkredov, On a problem of Gowers. Dokl. Akad. Nauk 400(2), 169–172 (2005) (Russian)

    MathSciNet  Google Scholar 

  19. I.D. Shkredov, On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat. 70(2), 179–221 (2006) (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Solymosi, Roth-type theorems in finite groups. Eur. J. Comb. 34(8), 1454–1458 (2013). doi:10.1016/j.ejc.2013.05.027. http://dx.doi.org/10.1016/j.ejc.2013.05.027

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Tao, V. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Research supported by a fellowship from the Clay Mathematics Institute. I am grateful to Vitaly Bergelson for sharing [7] with me, to Ben Green for pointing me to the references [11, 15], to Sean Eberhard for pointing me to the reference [20] and to Julia Wolf for suggesting some useful clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Austin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Austin, T. (2016). Ajtai–Szemerédi Theorems over quasirandom groups. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_19

Download citation

Publish with us

Policies and ethics