Abstract
Two versions of the Ajtai–Szemerédi Theorem are considered in the Cartesian square of a finite non-abelian group G. In case G is sufficiently quasirandom, we obtain strong forms of both versions: if \(E \subseteq G \times G\) is fairly dense, then E contains a large number of the desired patterns for most individual choices of ‘common difference’. For one of the versions, we also show that this set of good common differences is syndetic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Ajtai, E. Szemerédi, Sets of lattice points that form no squares. Stud. Sci. Math. Hung. 9, 9–11 (1974/1975)
T. Austin, Quantitative equidistribution for certain quadruples in quasi-random groups: Erratum. Comb. Probab. Comput. http://dx.doi.org/10.1017/S0963548315000243 (the print version hasn’t appeared yet).
T. Austin, Quantitative equidistribution for certain quadruples in quasi-random groups. Comb. Probab. Comput. 24(2), 376–381 (2015). doi:10.1017/S0963548314000492. http://dx.doi.org/10.1017/S0963548314000492
V. Bergelson, R. McCutcheon, Central sets and a non-commutative Roth theorem. Am. J. Math. 129(5), 1251–1275 (2007). doi:10.1353/ajm.2007.0031. http://dx.doi.org/10.1353/ajm.2007.0031
V. Bergelson, T. Tao, Multiple recurrence in quasirandom groups. Geom. Funct. Anal. 24(1), 1–48 (2014). doi:10.1007/s00039-014-0252-0. http://dx.doi.org/10.1007/s00039-014-0252-0
V. Bergelson, R. McCutcheon, Q. Zhang, A Roth theorem for amenable groups. Am. J. Math. 119(6), 1173–1211 (1997)
V. Bergelson, D. Robertson, P. Zorin-Kranich, Triangles in Cartesian squares of quasirandom groups. Available online at arXiv.org: 1410.5385 (preprint)
T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups (Springer, New York, 1985)
Q. Chu, Convergence of weighted polynomial multiple ergodic averages. Proc. Am. Math. Soc. 137, 1363–1369 (2009)
Q. Chu, P. Zorin-Kranich, Lower bound in the Roth Theorem for amenable groups. Ergod. Theory Dyn. Syst. 35(6), 1746–1766 (2015)
P. Erdős, E.G. Straus, How abelian is a finite group? Linear Multilinear Algebra 3(4), 307–312 (1975/1976)
A. Frieze, R. Kannan, Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999). doi:10.1007/s004930050052. http://dx.doi.org/10.1007/s004930050052
W.T. Gowers, Quasirandom groups. Comb. Probab. Comput. 17(3), 363–387 (2008). doi:10.1017/S0963548307008826. http://dx.doi.org/10.1017/S0963548307008826
W.T. Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010). doi:10.1112/blms/bdq018. http://dx.doi.org/10.1112/blms/bdq018
L. Pyber, How abelian is a finite group? in The Mathematics of Paul Erdős, I. Algorithms and Combinatorics, vol. 13 (Springer, Berlin, 1997), pp. 372–384. doi:10.1007/978-3-642-60408-9_27. http://dx.doi.org/10.1007/978-3-642-60408-9_27
R.A. Ryan, Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics (Springer, London, 2002). doi:10.1007/978-1-4471-3903-4. http://dx.doi.org/10.1007/978-1-4471-3903-4
R. Schatten, A Theory of Cross-Spaces. Annals of Mathematics Studies, vol. 26 (Princeton University Press, Princeton, 1950)
I.D. Shkredov, On a problem of Gowers. Dokl. Akad. Nauk 400(2), 169–172 (2005) (Russian)
I.D. Shkredov, On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat. 70(2), 179–221 (2006) (Russian)
J. Solymosi, Roth-type theorems in finite groups. Eur. J. Comb. 34(8), 1454–1458 (2013). doi:10.1016/j.ejc.2013.05.027. http://dx.doi.org/10.1016/j.ejc.2013.05.027
T. Tao, V. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)
Acknowledgements
Research supported by a fellowship from the Clay Mathematics Institute. I am grateful to Vitaly Bergelson for sharing [7] with me, to Ben Green for pointing me to the references [11, 15], to Sean Eberhard for pointing me to the reference [20] and to Julia Wolf for suggesting some useful clarifications.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Austin, T. (2016). Ajtai–Szemerédi Theorems over quasirandom groups. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-24298-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24296-5
Online ISBN: 978-3-319-24298-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)