Skip to main content

Sum-product formulae

  • Chapter
  • First Online:
Recent Trends in Combinatorics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

This is a survey on sum-product formulae and methods. We state old and new results. Our main objective is to introduce the basic techniques used to bound the size of the product and sumsets of finite subsets of a field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A.G.: In my primary school we took N = 12 which was the basic multiple needed for understanding U.K. currency at that time.

  2. 2.

    Erdős claimed that the Supreme Being kept a book of all the best proofs, and only occasionally would allow any mortal to glimpse at “The Book.”

  3. 3.

    A generalized arithmetic progression is the image of a lattice, that is:

    $$\displaystyle{ C:=\{ a_{0} + a_{1}n_{1} + a_{2}n_{2} +\ldots +a_{k}n_{k}:\ 0 \leq n_{j} \leq N_{j} - 1\ \text{for}\ 1 \leq j \leq k\}, }$$

    where \(N_{1},N_{2},\ldots,N_{k}\) are integers ≥ 2. This generalized arithmetic progression is said to have dimension k and volume \(N_{1}N_{2}\ldots N_{k}\); and is proper if its elements are distinct.

References

  1. F. Amoroso, E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150(3), 407–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ayyad, T. Cochrane, Z. Zheng, The congruence \(x_{1}x_{2} \equiv x_{3}x_{4}\pmod p\), the equation x 1 x 2 = x 3 x 4, and mean values of character sums. J. Number Theory 59, 398–413 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Bilu, The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud, Corvaja, Zannier…). Séminaire Bourbaki, Exposé 967, 59ème année (2006–2007); Astérisque 317, 1–38 (2007/2008)

    Google Scholar 

  4. J. Bourgain, A.A. Glibichuk, S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order. J. Lond. Math. Soc. 73, 380–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. GAFA 14, 27–57 (2004)

    MathSciNet  MATH  Google Scholar 

  6. M.-C. Chang, Sum and product of different sets. Contrib. Discrete Math. 1(1), (2006)

    Google Scholar 

  7. G. Elekes, On the number of sums and products. Acta Arith. 81(4), 365–367 (1997)

    MathSciNet  MATH  Google Scholar 

  8. P. Erdős, E. Szemerédi, On Sums and Products of Integers. Studies in Pure Mathematics (Birkhäuser, Basel, 1983), pp. 213–218

    Google Scholar 

  9. J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. Math. 155(3), 807–836 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ford, The distribution of integers with a divisor in a given interval. Ann. Math. 168, 367–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. G.A. Freiman, Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs (American Mathematical Society, Providence, 1973)

    MATH  Google Scholar 

  12. M.Z. Garaev, An explicit sum-product estimate in \(\mathbb{F}_{p}\). IMRN 35, 11 (2007)

    MathSciNet  Google Scholar 

  13. M.Z. Garaev, The sum-product estimate for large subsets of prime fields. Proc. Am. Math. Soc. 136, 2735–2739 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Glibichuk, M. Rudnev, Additive properties of product sets in an arbitrary finite field. J. d’Analyse Mathématique 108(1), 159–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Guth, N.H. Katz, On the Erdős distinct distances problem in the plane. Ann. Math. 181(1), 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Hart, A. Iosevitch, Sums and products in finite fields: an integral geometric viewpoint, in Radon Transforms, Geometry, and Wavelets: AMS Special Session, January 7–8, 2007, New Orleans. Contemporary Mathematics, vol. 464 (2008), pp. 129–135

    Article  Google Scholar 

  17. D. Hart, A. Iosevitch, J. Solymosi, Sums and products in finite fields via Kloosterman sums. IMRN Art. ID rnm007, 1–14 (2007)

    Google Scholar 

  18. D.R. Heath-Brown, S.V. Konyagin, New bounds for Gauss sums derived from k-th powers, and for Heilbronn’s exponential sums. Q. J. Math. 51, 221–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Helfgott, Growth and generation in SL_2(ZpZ). Ann. Math. 167, 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. H.N. Katz, C.-Y. Shen, A slight improvement to Garaev’s sum-product estimate. Proc. Am. Math. Soc. 136, 2499–2504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Kollár, Szemerédi-Trotter-type theorems in dimension 3. Adv. Math. 271, 30–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.V. Konyagin, M. Rudnev, On new sum-product type estimates. SIAM J. Discrete Math. 27(2), 973–990

    Google Scholar 

  23. S.V. Konyagin, I.D. Shkredov, On sum sets, having small product set. In Proceedings of the Steklov Institute of Mathematics 290(1), 288–299 (2015)

    Google Scholar 

  24. O. Roche-Newton, M. Rudnev, I.D. Shkredov, New sum-product type estimates over finite fields. arXiv:1408.0542 [math.CO]

    Google Scholar 

  25. M. Rudnev, On the number of incidences between planes and points in three dimensions. arXiv:1407.0426 [math.CO]

    Google Scholar 

  26. M. Rudnev, An improved sum-product inequality in fields of prime order. Int. Math. Res. Not. 16, 3693–3705 (2012)

    MathSciNet  MATH  Google Scholar 

  27. L. Székely, Crossing numbers and hard Erdős problems in discrete geometry. Comb. Probab. Comput. 6(3), 353–358 (1997)

    Article  MATH  Google Scholar 

  28. J. Solymosi, G. Tardos, On the number of k-rich transformations, in Proceedings of the twenty-third annual symposium on Computational geometry (SCG ‘07) (ACM, New York, 2007), pp. 227–231

    MATH  Google Scholar 

  29. J. Solymosi, On the number of sums and products. Bull. Lond. Math. Soc 37, 491–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Solymosi, Bounding multiplicative energy by the sumset. Adv. Math. 222(2), 402–408 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Tao, V.H. Vu, Additive Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105 (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  32. L.A. Vinh, The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields. Eur. J. Comb. 32(8), 1177–1181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks are due to Todd Cochrane, Ernie Croot, Harald Helfgott, Chris Pinner. Andrew Granville is partially supported by an NSERC Discovery Grant, as well as a Canadian Research Chair. Jozsef Solymosi is partially supported by ERC Advanced Research Grant no 267165 (DISCONV), by Hungarian National Research Grant NK 104183, and by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Solymosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Granville, A., Solymosi, J. (2016). Sum-product formulae. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_18

Download citation

Publish with us

Policies and ethics