Abeles, M., Bergman, H.: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70(4), 1629–1638 (1993)
Google Scholar
Arieli, A., Shoham, D.: Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73(5), 2072–2093 (1995)
Google Scholar
Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)
CrossRef
Google Scholar
Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, New Jersey (2006)
MATH
Google Scholar
Gansel, K.S., Singer, W.: Detecting multineuronal temporal patterns in parallel spike trains. Front. Neuroinformatics 6(May), 18 (2012)
Google Scholar
Grün, S., Rotter, S.: Analysis of Parallel Spike Trains. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Hillar, C., Effenberger, F.: hdnet - hopfield denoising network. https://github.com/team-hdnet/hdnet (2015)
Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Efficient and optimal little-hopfield auto-associative memory storage using minimum probability flow. In: NIPS Workshop on Discrete Optimization in Machine Learning (DISCML) (2012)
Google Scholar
Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Novel local learning rule for neural adaptation fits Hopfield memory networks efficiently and optimally. BMC Neurosci. 14(Suppl 1), P215 (2013)
CrossRef
Google Scholar
Hillar, C., Tran, N.: Robust exponential memory in Hopfield networks. arXiv e-prints (2014)
Google Scholar
Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)
MathSciNet
CrossRef
Google Scholar
Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik 31, 253–258 (1925)
CrossRef
Google Scholar
McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)
MathSciNet
MATH
Google Scholar
Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A., Khazipov, R.: Early gamma oscillations synchronize developing thalamus and cortex. Science 334(6053), 226–229 (2011)
CrossRef
Google Scholar
Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G., Grün, S.: Finding neural assemblies with frequent item set mining. Front. Neuroinformatics 7(May), 9 (2013)
Google Scholar
Pipa, G., Wheeler, D.W., Singer, W., Nikolić, D.: NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J. Comput. Neurosci. 25(1), 64–88 (2008)
CrossRef
Google Scholar
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
CrossRef
Google Scholar
Santos, L.V., Ribeiro, S., Tort, A.B.L.: Detecting cell assemblies in large neuronal populations. J. Neurosci. Methods 220(2), 149–166 (2013)
CrossRef
Google Scholar
Sohl-Dickstein, J., Battaglino, P., DeWeese, M.: New method for parameter estimation in probabilistic models: minimum probability flow. Phys. Rev. Lett. 107(22), 220601 (2011)
CrossRef
Google Scholar