Skip to main content

Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9370)

Abstract

We present here a novel method for the classical task of finding and extracting recurring spatiotemporal patterns in recorded spiking activity of neuronal populations. In contrast to previously proposed methods it does not seek to classify exactly recurring patterns, but rather approximate versions possibly differing by a certain number of missed, shifted or excess spikes. We achieve this by fitting large Hopfield networks to windowed, binned spiking activity in an unsupervised way using minimum probability flow parameter estimation and then collect Hopfield memories over the raw data. This procedure results in a drastic reduction of pattern counts and can be exploited to identify prominently recurring spatiotemporal patterns. Modeling furthermore the sequence of occurring Hopfield memories over the original data as a Markov process, we are able to extract low-dimensional representations of neural population activity on longer time scales. We demonstrate the approach on a data set obtained in rat barrel cortex and show that it is able to extract a remarkably low-dimensional, yet accurate representation of population activity observed during the experiment.

Keywords

  • Neuronal population activity
  • Parallel spike train analysis
  • Spatiotemporal patterns
  • Hopfield network
  • Ising model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24261-3_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-24261-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Abeles, M., Bergman, H.: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70(4), 1629–1638 (1993)

    Google Scholar 

  2. Arieli, A., Shoham, D.: Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73(5), 2072–2093 (1995)

    Google Scholar 

  3. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)

    CrossRef  Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, New Jersey (2006)

    MATH  Google Scholar 

  5. Gansel, K.S., Singer, W.: Detecting multineuronal temporal patterns in parallel spike trains. Front. Neuroinformatics 6(May), 18 (2012)

    Google Scholar 

  6. Grün, S., Rotter, S.: Analysis of Parallel Spike Trains. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  7. Hillar, C., Effenberger, F.: hdnet - hopfield denoising network. https://github.com/team-hdnet/hdnet (2015)

  8. Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Efficient and optimal little-hopfield auto-associative memory storage using minimum probability flow. In: NIPS Workshop on Discrete Optimization in Machine Learning (DISCML) (2012)

    Google Scholar 

  9. Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Novel local learning rule for neural adaptation fits Hopfield memory networks efficiently and optimally. BMC Neurosci. 14(Suppl 1), P215 (2013)

    CrossRef  Google Scholar 

  10. Hillar, C., Tran, N.: Robust exponential memory in Hopfield networks. arXiv e-prints (2014)

    Google Scholar 

  11. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    MathSciNet  CrossRef  Google Scholar 

  12. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik 31, 253–258 (1925)

    CrossRef  Google Scholar 

  13. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  14. Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A., Khazipov, R.: Early gamma oscillations synchronize developing thalamus and cortex. Science 334(6053), 226–229 (2011)

    CrossRef  Google Scholar 

  15. Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G., Grün, S.: Finding neural assemblies with frequent item set mining. Front. Neuroinformatics 7(May), 9 (2013)

    Google Scholar 

  16. Pipa, G., Wheeler, D.W., Singer, W., Nikolić, D.: NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J. Comput. Neurosci. 25(1), 64–88 (2008)

    CrossRef  Google Scholar 

  17. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    CrossRef  Google Scholar 

  18. Santos, L.V., Ribeiro, S., Tort, A.B.L.: Detecting cell assemblies in large neuronal populations. J. Neurosci. Methods 220(2), 149–166 (2013)

    CrossRef  Google Scholar 

  19. Sohl-Dickstein, J., Battaglino, P., DeWeese, M.: New method for parameter estimation in probabilistic models: minimum probability flow. Phys. Rev. Lett. 107(22), 220601 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yuri Campbell for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Effenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Effenberger, F., Hillar, C. (2015). Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)