Advertisement

Efficient Generation of High-Quality Multilingual Subtitles for Video Lecture Repositories

  • Juan Daniel Valor MiróEmail author
  • Joan Albert Silvestre-Cerdà
  • Jorge Civera
  • Carlos Turró
  • Alfons Juan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9307)

Abstract

Video lectures are a valuable educational tool in higher education to support or replace face-to-face lectures in active learning strategies. In 2007 the Universitat Politècnica de València (UPV) implemented its video lecture capture system, resulting in a high quality educational video repository, called poliMedia, with more than 10.000 mini lectures created by 1.373 lecturers. Also, in the framework of the European project transLectures, UPV has automatically generated transcriptions and translations in Spanish, Catalan and English for all videos included in the poliMedia video repository. transLectures’s objective responds to the widely-recognised need for subtitles to be provided with video lectures, as an essential service for non-native speakers and hearing impaired persons, and to allow advanced repository functionalities. Although high-quality automatic transcriptions and translations were generated in transLectures, they were not error-free. For this reason, lecturers need to manually review video subtitles to guarantee the absence of errors. The aim of this study is to evaluate the efficiency of the manual review process from automatic subtitles in comparison with the conventional generation of video subtitles from scratch. The reported results clearly indicate the convenience of providing automatic subtitles as a first step in the generation of video subtitles and the significant savings in time of up to almost 75 % involved in reviewing subtitles.

Keywords

Video lecture repositories Automatic speech recognition Machine translation Efficient video subtitling 

Notes

Acknowledgments

The research leading to these results has received funding from the European Union FP7/2007-2013 under grant agreement no 287755 (transLectures) and ICT PSP/2007-2013 under grant agreement no 621030 (EMMA), and the Spanish MINECO Active2Trans (TIN2012-31723) research project.

References

  1. 1.
    del-Agua, M.A., Giménez, A., Serrano, N., Andrés-Ferrer, J., Civera, J., Sanchis, A., Juan, A.: The translectures-UPV toolkit. In: Navarro Mesa, J.L., Ortega, A., Teixeira, A., Hernández Pérez, E., Quintana Morales, P., Ravelo García, A., Guerra Moreno, I., Toledano, D.T. (eds.) IberSPEECH 2014. LNCS, vol. 8854, pp. 269–278. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Glass, J., et al.: Recent progress in the MIT spoken lecture processing project. In: Proceedings of Interspeech 2007, vol. 3, pp. 2553–2556 (2007)Google Scholar
  3. 3.
    Koehn, P., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of ACL, pp. 177–180 (2007)Google Scholar
  4. 4.
    Munteanu, C., et al.: Improving ASR for lectures through transformation-based rules learned from minimal data. In: Proceedings of ACL-AFNLP, pp. 764–772 (2009)Google Scholar
  5. 5.
    poliMedia: polimedia platform (2007). http://media.upv.es/
  6. 6.
    Ross, T., Bell, P.: No significant difference only on the surface. Int. J. Instr. Technol. Distance Learn. 4(7), 3–13 (2007)Google Scholar
  7. 7.
    Silvestre, J.A. et al.: Translectures. In: Proceedings of IberSPEECH 2012 (2012)Google Scholar
  8. 8.
    Soong, S.K.A., Chan, L.K., Cheers, C., Hu, C.: Impact of video recorded lectures among students. In: Who’s Learning, pp. 789–793 (2006)Google Scholar
  9. 9.
    Valor Miró, J.D., Pérez González de Martos, A., Civera, J., Juan, A.: Integrating a state-of-the-art ASR system into the opencast matterhorn platform. In: Torre Toledano, D., Ortega Giménez, A., Teixeira, A., González Rodríguez, J., Hernández Gómez, L., San Segundo Hernández, R., Ramos Castro, D. (eds.) IberSPEECH 2012. CCIS, vol. 328, pp. 237–246. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Wald, M.: Creating accessible educational multimedia through editing automatic speech recognition captioning in real time. Inter. Technol. Smart Educ. 3(2), 131–141 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan Daniel Valor Miró
    • 1
    Email author
  • Joan Albert Silvestre-Cerdà
    • 1
  • Jorge Civera
    • 1
  • Carlos Turró
    • 1
  • Alfons Juan
    • 1
  1. 1.Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations