A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator

  • Mehrnoosh VahdatEmail author
  • Luca Oneto
  • Davide Anguita
  • Mathias Funk
  • Matthias Rauterberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9307)


This paper presents a Learning Analytics approach for understanding the learning behavior of students while interacting with Technology Enhanced Learning tools. In this work we show that it is possible to gain insight into the learning processes of students from their interaction data. We base our study on data collected through six laboratory sessions where first-year students of Computer Engineering at the University of Genoa were using a digital electronics simulator. We exploit Process Mining methods to investigate and compare the learning processes of students. For this purpose, we measure the understandability of their process models through a complexity metric. Then we compare the various clusters of students based on their academic achievements. The results show that the measured complexity has positive correlation with the final grades of students and negative correlation with the difficulty of the laboratory sessions. Consequently, complexity of process models can be used as an indicator of variations of student learning paths.


Learning analytics Educational data mining Technology Enhanced Learning Process mining Complexity Interaction data Educational simulator 



This work was supported in part by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments, which is funded by the EACEA Agency of the European Commission under EMJD ICE FPA n 2010-0012. Also, we thank professors Domenico Ponta and Giuliano Donzellini for providing support and help to our experiment.


  1. 1.
    Siemens, G.: Learning analytics: envisioning a research discipline and a domain of practice. In: International Conference on Learning Analytics and Knowledge (2012)Google Scholar
  2. 2.
    Chatti, M.A., Dyckhoff, A.L., Schroeder, U., Thüs, H.: A reference model for learning analytics. Int. J. Technol. Enhanced Learn. 4(5), 318–331 (2012)CrossRefGoogle Scholar
  3. 3.
    Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)CrossRefGoogle Scholar
  4. 4.
    Siemens, G., Long, P.: Penetrating the fog: analytics in learning and education. EDUCAUSE Rev. 46(5), 30 (2011)Google Scholar
  5. 5.
    Vahdat, M., Ghio, A., Oneto, L., Anguita, D., Funk, M., Rauterberg, M.: Advances in learning analytics and educational data mining. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2015)Google Scholar
  6. 6.
    Kruse, A., Pongsajapan, R.: Student-centered learning analytics. In: CNDLS Thought Papers (2012)Google Scholar
  7. 7.
    Prince, M.J., Felder, R.M.: Inductive teaching and learning methods: Definitions, comparisons, and research bases. J. Eng. Educ. 95(2), 123–138 (2006)CrossRefGoogle Scholar
  8. 8.
    Vahdat, M., Oneto, L., Ghio, A., Anguita, D., Funk, M., Rauterberg, M.: Human algorithmic stability and human rademacher complexity. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2015)Google Scholar
  9. 9.
    Lee, V.S.: The power of inquiry as a way of learning. Innovative High. Educ. 36(3), 149–160 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Jong, T., Sotiriou, S., Gillet, D.: Innovations in stem education: the go-lab federation of online labs. Smart Learn. Environ. 1(1), 1–16 (2014)CrossRefGoogle Scholar
  11. 11.
    Donzellini, G., Ponta, D.: A simulation environment for e-learning in digital design. IEEE Trans. Ind. Electron. 54(6), 3078–3085 (2007)CrossRefGoogle Scholar
  12. 12.
    Bienkowski, M., Feng, M., Means, B.: Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. In: US Department of Education, Office of Educational Technology (2012)Google Scholar
  13. 13.
    Del Blanco, A., Serrano, A., Freire, M., Martínez-Ortiz, I., Fernández-Manjón, B.: E-learning standards and learning analytics. can data collection be improved by using standard data models? In: IEEEGlobal Engineering Education Conference (2013)Google Scholar
  14. 14.
    Trčka, N., Pechenizkiy, M., van der Aalst, W.M.P.: Process mining from educational data. In: Robero, C., Ventura, S., Penchenizkiy, M., Baker, R., (eds.) Handbook of Educational Data Mining, pp. 123–142. Boca Raton: Chapman & Hall/CRC (2010).
  15. 15.
    Trcka, N., Pechenizkiy, M.: From local patterns to global models: Towards domain driven educational process mining. In: International Conference on Intelligent Systems Design and Applications (2009)Google Scholar
  16. 16.
    Pechenizkiy, M., Trcka, N., Vasilyeva, E., Van Der Aalst, W., De Bra, P.: Process mining online assessment data. In: International Working Group on Educational Data Mining (2009)Google Scholar
  17. 17.
    Bannert, M., Reimann, P., Sonnenberg, C.: Process mining techniques for analysing patterns and strategies in students self-regulated learning. Metacognition Learn. 9(2), 161–185 (2014)CrossRefGoogle Scholar
  18. 18.
    Figl, K., Laue, R.: Cognitive complexity in business process modeling. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 452–466. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Gruhn, V., Laue, R.: Complexity metrics for business process models. In: International Conference on Business Information Systems (2006)Google Scholar
  20. 20.
    Štuikys, V., Damaševičius, R.: Complexity evaluation of feature models and meta-programs. In: Meta-Programming and Model-Driven Meta-Program Development (2013)Google Scholar
  21. 21.
    Lassen, K.B., Van Der Aalst, W.M.P.: Complexity metrics for workflow nets. Inf. Softw. Technol. 51(3), 610–626 (2009)CrossRefGoogle Scholar
  22. 22.
    McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zuse, H.: Softw. Complex. Walter de Cruyter, NY, USA (1991) Google Scholar
  24. 24.
    Thomas, J.C., Richards, J.T.: Achieving psychological simplicity: measures and methods to reduce cognitive complexity. In: Human-Computer Interaction: Design Issues, Solutions, and Applications (2009)Google Scholar
  25. 25.
    Rauterberg, M.: A method of a quantitative measurement of cognitive complexity. In: Human-Computer Interaction: Tasks and Organisation (1992)Google Scholar
  26. 26.
    Holzinger, A., Popova, E., Peischl, B., Ziefle, M.: On complexity reduction of user interfaces for safety-critical systems. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 108–122. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  27. 27.
    Ham, D.H., Park, J., Jung, W.: A framework-based approach to identifying and organizing the complexity factors of human-system interaction. IEEE Syst. J. 5(2), 213–222 (2011)CrossRefGoogle Scholar
  28. 28.
    Rauterberg, M.: How to measure cognitive complexity in human-computer interaction. In: Cybernetics and Systems Research (1996)Google Scholar
  29. 29.
    Sapounidis, T., Demetriadis, S., Stamelos, I.: Evaluating children performance with graphical and tangible robot programming tools. Pers. Ubiquit. Comput. 19(1), 225–237 (2015)CrossRefGoogle Scholar
  30. 30.
    Mohamed, N., Sulaiman, R.F., Endut, W.R.: The use of cyclomatic complexity metrics in programming performance’s assessment. Procedia-Soc. Beha. Sci. 90, 497–503 (2013)CrossRefGoogle Scholar
  31. 31.
    Ponta, D., Anguita, D., Da Bormida, G., Donzellini, G.: Ten years of activity on computer-aided learning for electronics: Needs, experiences, field evaluation. In: Congreso sobre tecnologías aplicadas a la enseñanza de la electrónica (1998)Google Scholar
  32. 32.
    Vahdat, M., Oneto, L., Ghio, A., Donzellini, G., Anguita, D., Funk, M., Rauterberg, M.: A learning analytics methodology to profile students behavior and explore interactions with a digital electronics simulator. In: de Freitas, S., Rensing, C., Ley, T., Muñoz-Merino, P.J. (eds.) EC-TEL 2014. LNCS, vol. 8719, pp. 596–597. Springer, Heidelberg (2014) Google Scholar
  33. 33.
    Van Der Aalst, W.M.: Tool support. In: Process Mining (2011)Google Scholar
  34. 34.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  35. 35.
    Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mehrnoosh Vahdat
    • 1
    • 3
    Email author
  • Luca Oneto
    • 1
  • Davide Anguita
    • 2
  • Mathias Funk
    • 3
  • Matthias Rauterberg
    • 3
  1. 1.DITEN - Università degli Studi di GenovaGenoaItaly
  2. 2.DIBRIS - Università degli Studi di GenovaGenoaItaly
  3. 3.Department of Industrial DesignEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations