MOOC Video Interaction Patterns: What Do They Tell Us?

  • Nan LiEmail author
  • Łukasz Kidziński
  • Patrick Jermann
  • Pierre Dillenbourg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9307)


For MOOC learners, lecture video viewing is the central learning activity. This paper reports a large-scale analysis of in-video interactions. We categorize the video behaviors into patterns by employing a clustering methodology, based on the available types of interactions, namely, pausing, forward and backward seeking and speed changing. We focus on how learners view MOOC videos with these interaction patterns, especially on exploring the relationship between video interaction and perceived video difficulty, video revisiting behaviors and student performance. Our findings provide insights for improving the MOOC learning experiences.


MOOC Online education Video analysis Video interaction Clustering analysis 


  1. 1.
    Branch, P., Egan, G., Tonkin, B.: Modeling interactive behaviour of a video based multimedia system. In: 1999 IEEE International Conference on Communications, ICC 1999, vol. 2, pp. 978–982. IEEE (1999)Google Scholar
  2. 2.
    Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A.D., Seaton, D.: Studying learning in the worldwide classroom: research into edxs first mooc. Res. Pract. Assess. 8, 13–25 (2013)Google Scholar
  3. 3.
    Dey-Sircar, J.K., Salehi, J.D., Kurose, J.F., Towsley, D.: Providing vcr capabilities in large-scale video servers. In: Proceedings of the Second ACM International Conference on Multimedia MULTIMEDIA 1994, pp. 25–32. ACM, New York (1994)Google Scholar
  4. 4.
    Dolnicar, S., Grabler, K., Mazanec, J.A., Woodside, A., Crouch, G., Oppermann, M., Sakai, M. et al.: A tale of three cities: perceptual charting for analysing destination images. CABI Publishing (1999)Google Scholar
  5. 5.
    Guo, P.J., Reinecke, K.: Demographic differences in how students navigate through moocs. In: Proceedings of the First ACM Conference on Learning @ Scale Conference L@S 2014, pp. 21–30. ACM, New York (2014)Google Scholar
  6. 6.
    Halawa, S., Greene, D., Mitchell, J.: Dropout prediction in moocs using learner activity features. In: Proceedings of the Second European MOOC Stakeholder Summit, pp. 58–65 (2014)Google Scholar
  7. 7.
    Kim, J., Guo, P.J., Seaton, D.T., Mitros, P., Gajos, K.Z., Miller, R.C.: Understanding in-video dropouts and interaction peaks inonline lecture videos. In: Proceedings of the First ACM Conference on Learning @ Scale Conference L@S 2014, pp. 31–40. ACM, New York (2014)Google Scholar
  8. 8.
    Kizilcec, R.F., Piech, C., Schneider, E.: Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In: Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK 2013, pp. 170–179. ACM, New York (2013)Google Scholar
  9. 9.
    Li, N., Kidzinski, L., Jermann, P., Pierre, D.: How do in-video interactions reflect perceived video difficulty? In: Proceedings of the Third European MOOC Stakeholder Summit (to appear, 2015)Google Scholar
  10. 10.
    Li, V.O.K., Liao, W., Qiu, X., Wong, E.W.M.: Performance model of interactive video-on-demand systems. IEEE J. Sel. Areas Commun. 14(6), 1099–1109 (1996)CrossRefGoogle Scholar
  11. 11.
    Mongy, S., Djeraba, C., Simovici, D.A.: On clustering users’ behaviors in video sessions. In: Stahlbock, R., Crone, S.F., Lessmann, S. (eds.) DMIN, pp. 99–103. CSREA Press (2007)Google Scholar
  12. 12.
    Seaton, D.T., Bergner, Y., Chuang, I., Mitros, P., Pritchard, D.E.: Who does what in a massive open online course? Commun. ACM 57(4), 58–65 (2014)CrossRefGoogle Scholar
  13. 13.
    Shenoy, P.J., Vin, H.M.: Efficient support for scan operations in video servers. In: Proceedings of the third ACM international conference on Multimedia, pp. 131–140. ACM (1995)Google Scholar
  14. 14.
    Syeda-Mahmood, T., Ponceleon, D.: Learning video browsing behavior and its application in the generation of video previews. In: Proceedings of the Ninth ACM International Conference on Multimedia MULTIMEDIA 2001, pp. 119–128. ACM, New York (2001)Google Scholar
  15. 15.
    Sinha, T., Jermann, P., Li, N., Dillenbourg, P.: Your click decides your fate: inferring information processing and attrition behavior from mooc video clickstream interactions. In: Proceedings of the 2014 Empirical Methods in Natural Language Processing Workshop on Modeling Large Scale Social Interaction in Massively Open Online Courses (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nan Li
    • 1
    Email author
  • Łukasz Kidziński
    • 1
  • Patrick Jermann
    • 1
  • Pierre Dillenbourg
    • 1
  1. 1.École polytechnique fédérale de LausanneLausanneSwitzerland

Personalised recommendations