Short Views on Insect Genomics and Proteomics pp 229-251 | Cite as
Nano-Insecticides for the Control of Human and Crop Pests
Abstract
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like insecticides, pharmaceuticals, electronics, and agriculture. Biosynthesis of insecticides from plant extracts is currently under exploration. Plant extracts are very cost-effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. The present review was carried out to establish the management of insect pests using silver nanoparticles (AgNPs) from Cassia occidentalis against different life stages of crop and human pests. Synthesized AgNPs were characterized by UV–vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Characteristics of the synthesized AgNPs were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using a UV–vis spectrophotometer at 420 nm. SEM analysis of the synthesized AgNPs clearly showed clustered and irregular shapes, mostly aggregated and having a size of 20–85 nm. The chemical composition of elements present in the solution was determined by its energy-dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. Biosynthesis of nanoparticles may be triggered by several compounds such as carbonyl groups, terpenoids, phenolics, flavones, amines, amides, proteins, pigments, alkaloids, and other reducing agents present in the biological extracts. Overall, this study adds knowledge on C. occidentalis-borne insecticides and green-synthesized AgNP toxic against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and safer pest control tools.
Abbreviations
- a.u.
Absorption unit
- AgNP
Silver nanoparticle
- CQ
Chloroquine
- DMRT
Duncan’s multiple range test
- EDX
Energy-dispersive X-ray
- fcc
Face-centered cubic
- FTIR
Fourier transform infrared
- IPM
Insect pest management
- JCPDS
Joint Committee on Powder Diffraction Standards
- KeV
Kiloelectronvolt
- LC50, LC90
Lethal concentration
- NPs
Nanoparticles
- ppm
Parts per million
- RBC
Red blood cell
- SD
Standard deviation
- SEM
Scanning electron microscopy/microscope
- SPR
Surface plasmon resonance
- UV–vis
UV–visible
- WHO
World Health Organization
- XRD
X-ray diffraction
Notes
Acknowledgments
The authors are thankful for the financial support by King Saud University, Vice Deanship of Research Chairs.
References
- 1.James, A. A. (1992). Mosquito molecular genetics: The hands that feed bite back. Science, 257, 37–38.CrossRefPubMedGoogle Scholar
- 2.Mehlhorn, H., Al-Rasheid, K. A., Al-Quraishy, S., & Abdel-Ghaffar, F. (2012). Research and increase of expertise in arachno-entomology are urgently needed. Parasitology Research, 110, 259–265.CrossRefPubMedGoogle Scholar
- 3.Mehlhorn, H. (2008). Encyclopedia of parasitology (3rd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
- 4.WHO. (2014). Malaria. Fact sheet N°94.Google Scholar
- 5.Siems, K. J., Mockenhaupt, F. P., Bienzle, U., Gupta, M. P., & Eich, E. (1999). In vitro antiplasmodial activity of Central American medicinal plants. Tropical Medicine and International Health, 4, 611–615.CrossRefGoogle Scholar
- 6.Bhat, P. G., & Surolia, N. (2001). In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. The American Journal of Tropical Medicine and Hygiene, 65, 304–308.CrossRefPubMedGoogle Scholar
- 7.Bagavan, A., Rahuman, A. A., Kamaraj, C., Kaushik, N. K., Mohanakrishnan, D., & Sahal, D. (2011). Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitology Research, 108, 1099–1109.CrossRefPubMedGoogle Scholar
- 8.Ibrahim, M. A., Aliyu, A. B., Sallau, A. B., Bashir, M., Yunusa, I., & Umar, T. S. (2010). Senna occidentalis leaf extract possesses antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacognosy Research, 2, 175–180.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Egharevba, O. H., Anselem, O. C., Abdullahi, M. S., Sabo, M., Okwute, K. S., & Okogun, I. J. (2010). Phytochemical analysis and broad spectrum antimicrobial activity of Cassia occidentalis L. (whole plant). New York Science Journal, 3, 74–81.Google Scholar
- 10.Yadava, R. N., & Satnami, D. K. (2011). Chemical constituents from Cassia occidentalis Linn. Indian Journal of Chemistry, 50B, 1112–1118.Google Scholar
- 11.Kuo, S. C., Chen, S. C., La, C. F., Teng, C. M., & Wang, J. P. (1996). Studies on the anti-inflammatory and antiplatelet activities of constituents isolated from the roots and stem of Cassia occidentalis L. Chinese Pharmaceutical Journal, 48, 291–302.Google Scholar
- 12.Tona, L., Cimanga, R. K., Mesia, K., Musuamba, C. T., De Bruyne, T., & Apers, S. (2004). In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. Journal of Ethnopharmacology, 93, 27–32.CrossRefPubMedGoogle Scholar
- 13.Lal, J., & Gupta, P. C. (1974). Two new anthraquinones from the seeds of Cassia occidentalis. Experientia, 30, 850–851.CrossRefGoogle Scholar
- 14.Kudav, N. A, & Kulkarni, A. B. (1974). Chemical investigation of Cassia occidentalis. Indian Journal of Chemistry, 12, 1042–1044.Google Scholar
- 15.Haraguchi, M., Górniak, S. L., Dagli, M. L. Z., & Raspantini, P. C. F. (1996). Determinac¸ ão dos constituintes químicos das frac¸ ões tóxicas de fedegoso (Senna occidentalis L.). In: Proceedings of Annual Meeting of the Brazilian Chemical Society, Poc¸ os de Caldas, Brazil.Google Scholar
- 16.Haraguchi, M., Dagli, M. L. Z., Raspantini, P. C. F., & Górniak, S. L. (2003). The effects of low doses of Senna occidentalis seeds on broiler chickens. Veterinary Research Communication, 27, 321–328.CrossRefGoogle Scholar
- 17.Bian, G., Joshi, D., Dong, Y., Lu, P., Zhou, G., Pan, X., Xu, Y., Dimopoulos, G., & Xi, Z. (2013). Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science, 340, 748–751.CrossRefPubMedGoogle Scholar
- 18.Lee, S. E., Kim, J. E., & Lee, H. S. (2001). Insecticide resistance in increasing interest. Agricultural Chemistry and Biotechnology, 44, 105–112.Google Scholar
- 19.Becker, B. M., Cahill, J. D. (2010). Parasitic infections. In: J. A. Marx (Ed.), Rosen’s emergency medicine (Vol. 2(7), pp. 1752–1759). Philadelphia: Elsevier.Google Scholar
- 20.Rao, G. V. R., Wightman, J. A., & Ranga Rao, D. V. (1993). World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Science and Application, 14, 273–284.Google Scholar
- 21.Murali Krishna, T., Devaki, K., Raja Reddy, K., & Venkateswarlu, U. (2008). Efficacy of certain new insecticide molecules against groundnut defoliator, Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Current Biotica, 2(2), 173–180.Google Scholar
- 22.Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanbiotechnology, 6, 1–6.Google Scholar
- 23.Dias, A. M. G. C., Hussain, A., Marcos, A. S., & Roque, A. A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 29, 142–155.CrossRefPubMedGoogle Scholar
- 24.Goodsell, D. S. (2004). Bionanotechnology: Lessons from nature. Hoboken: Wiley.CrossRefGoogle Scholar
- 25.Awwad, A. M., & Nidà, M. (2012). Green synthesis of silver nanoparticles by mulberry leaves extract. Nanoscience and Nanotechnology, 2, 125–128.CrossRefGoogle Scholar
- 26.Geoprincy, G., Saravanan, P., NagendraGandhi, N., & Renganathan, S. (2011). A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method. Digest Journal of Nanomaterials and Biostructures, 6, 1557–1565.Google Scholar
- 27.Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefPubMedGoogle Scholar
- 28.Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extract. Bioprocess and Biosystems Engineering, 32, 79–84.CrossRefPubMedGoogle Scholar
- 29.Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., & Hwang, J. S. (2013). Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitology Research, 112, 981–990.CrossRefPubMedGoogle Scholar
- 30.Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Nicoletti, M., Jiang, W., Benelli, G., Chandramohan, B., & Suresh, U. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research, 114, 1519–1529.CrossRefPubMedGoogle Scholar
- 31.Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., Mahesh Kumar, P., Subramaniam, J., Dinesh, D., & Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 114, 1551–1562.CrossRefPubMedGoogle Scholar
- 32.Murugan, K., Benelli, G., Suganya, A., Dinesh, D., Panneerselvam, C., Nicoletti, M., Hwang, J. S., Mahesh Kumar, P., Subramaniam, J., & Suresh, U. (2015). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Research. doi:10.1007/s00436-015-4417-z.Google Scholar
- 33.Murugan, K., Benelli, G., Panneerselvam, C., Subramaniam, J., Jeyalalitha, T., Dinesh, D., Nicoletti, M., Hwang, J. S., Suresh, U., & Madhiyazhagan, P. (2015). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 153, 129–138.Google Scholar
- 34.Sastry, M., Patil, V., & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. The Journal of Physical Chemistry B, 102, 1404–1410.CrossRefGoogle Scholar
- 35.Shrivastava, S., & Dash, D. (2010). Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Letters, 2, 164–168.CrossRefGoogle Scholar
- 36.Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8, 39.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., & Farahani, F. (2011). Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules, 16, 6667–6676.CrossRefPubMedGoogle Scholar
- 38.Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2014). Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. International Journal of Metals, 1–8.Google Scholar
- 39.Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surface B Biointerfaces, 76, 50–56.CrossRefGoogle Scholar
- 40.Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 18, 285604.CrossRefGoogle Scholar
- 41.Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., & Ibrahim, N. A. (2010). Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. International Journal of Nanomedicine, 5, 743–751.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., & Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surface A: Physicochemical and Engineering Aspects, 348, 212–216.CrossRefGoogle Scholar
- 43.Dubey, M., Bhadauria, S., & Kushwah, B. S. (2009). Green Synthesis of nanosilver particles from extract of Eucalyptus Hybrida (Safeda) Leaf. Digest Journal of Nanomaterials and Biostructures, 4(3), 537–543.Google Scholar
- 44.Cho, K., Park, J., Osaka, T., & Park, S. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51, 956–960.CrossRefGoogle Scholar
- 45.Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Khatak, J., Thyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology, 19(7), 075103.CrossRefPubMedGoogle Scholar
- 46.Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 1–11.Google Scholar
- 47.Sathyavathi, R., Balamurali Krishna, M., Venugopal Rao, S., Saritha, R., & Narayana Rao, D. (2010). Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Advanced Science Letters, 3, 1–6.CrossRefGoogle Scholar
- 48.MacCuspie, R. I., Rogers, K., Patra, M., Suo, Z., Allen, A. J., & Martin, M. N. (2011). Toxicity testing of nanomaterials. Journal of Environmental Monitoring, 13, 1212–1226.CrossRefPubMedGoogle Scholar
- 49.Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surface B: Biointerfaces, 79(2), 488–493.CrossRefGoogle Scholar
- 50.Kumar, V., Yadav, S. C., & Yadav, S. K. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology and Biotechnology, 85, 1301–1309.CrossRefGoogle Scholar
- 51.Chen, L., & Evans, J. R. (2009). Arched structures created by colloidal droplets as they dry. Langmuir, 25, 11299–11301.CrossRefPubMedGoogle Scholar
- 52.Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem Bark. Digest Journal of Nanomaterials and Biostructures, 5(2), 369–372.Google Scholar
- 53.Xu, H., & Käll, M. (2002). Morphology effects on the optical properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 4, 254–259.Google Scholar
- 54.Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefPubMedGoogle Scholar
- 55.Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), e103–e109.CrossRefGoogle Scholar
- 56.Magudapatty, P., Gangopadhyayrans, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B, 299, 142–146.CrossRefGoogle Scholar
- 57.Larson, R. T., Lorch, J. M., Pridgeon, J. W., Becnel, J. J., Clarck, G. G., & Lan, Q. (2010). The biological activity of α-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. Journal of Medical Entomology, 47, 249–257.PubMedPubMedCentralGoogle Scholar
- 58.Maheswaran, R., & Ignacimuthu, S. (2012). Anovel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitology Research, 110, 1801–1813.CrossRefPubMedGoogle Scholar
- 59.Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., & Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1(2), 124–129.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Murugan, K., & Jeyabalan, D. (1999). Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Current Science, 76, 631–633.Google Scholar
- 61.Rawani, A., Haldar, K. M., Ghosh, A., & Chandra, G. (2009). Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research, 105, 1411–1417.CrossRefPubMedGoogle Scholar
- 62.Rajakumar, G., & Rahuman, A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118, 196–203.CrossRefPubMedGoogle Scholar
- 63.Soni, N., & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research, 110(1), 175–184.CrossRefPubMedGoogle Scholar
- 64.Patil, C. D., Patil, S. V., Borase, H. P., Salunke, B. K., & Salunkhe, R. B. (2012). Larvicidal activity of silver nanoparticles synthesised using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 110, 1815–1822.CrossRefPubMedGoogle Scholar
- 65.Tiwari, D. K., & Behari, J. (2009). Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Advances in Biological Research, 3(3–4), 89–95.Google Scholar
- 66.Agalya Priyadarshini, K., Murugan, K., Panneerselvam, C., Ponarulselvam, S., Jiang-Shiou Hwang, & Nicoletti, M. (2012). Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 111, 997–1006.CrossRefGoogle Scholar
- 67.Kumar, N. A., Murugan, K., Rejeeth, C., Madhiyazhagan, P., & Barnard, D. R. (2012). Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne and Zoonotic Diseases, 12(3), 262–268.CrossRefGoogle Scholar
- 68.Gessler, M. C., Nkunya, M. H., Mwasumbi, L. B., Heinrich, M., & Tanner, M. (1994). Screening Tanzanian medicinal plants for antimalarial activity. Acta Tropica, 56(1), 65–77.CrossRefPubMedGoogle Scholar
- 69.Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, A., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacific Journal of Tropical Biomedicine, 574–580.Google Scholar
- 70.Panneerselvam, C., Ponarulselvam, S., & Murugan, K. (2011). Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Archives of Applied Science Research, 3(6), 208–217.Google Scholar
- 71.Ravikumar, S., Inbaneson, S. J., & Suganthi, P. (2012). In vitro antiplasmodial activity of ethanolic extracts of South Indian medicinal plants against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 180–183.Google Scholar