Nano-Insecticides for the Control of Human and Crop Pests

  • K. Murugan
  • Chandrasekar Raman
  • C. Panneerselvam
  • P. Madhiyazhagan
  • J. Subramanium
  • D. Dinesh
  • Jiang-Shiou Hwang
  • Jiang Wei
  • Mohamad Saleh AlSalhi
  • S. Devanesan
Chapter
Part of the Entomology in Focus book series (ENFO, volume 4)

Abstract

Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like insecticides, pharmaceuticals, electronics, and agriculture. Biosynthesis of insecticides from plant extracts is currently under exploration. Plant extracts are very cost-effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. The present review was carried out to establish the management of insect pests using silver nanoparticles (AgNPs) from Cassia occidentalis against different life stages of crop and human pests. Synthesized AgNPs were characterized by UV–vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Characteristics of the synthesized AgNPs were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using a UV–vis spectrophotometer at 420 nm. SEM analysis of the synthesized AgNPs clearly showed clustered and irregular shapes, mostly aggregated and having a size of 20–85 nm. The chemical composition of elements present in the solution was determined by its energy-dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. Biosynthesis of nanoparticles may be triggered by several compounds such as carbonyl groups, terpenoids, phenolics, flavones, amines, amides, proteins, pigments, alkaloids, and other reducing agents present in the biological extracts. Overall, this study adds knowledge on C. occidentalis-borne insecticides and green-synthesized AgNP toxic against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and safer pest control tools.

Abbreviations

a.u.

Absorption unit

AgNP

Silver nanoparticle

CQ

Chloroquine

DMRT

Duncan’s multiple range test

EDX

Energy-dispersive X-ray

fcc

Face-centered cubic

FTIR

Fourier transform infrared

IPM

Insect pest management

JCPDS

Joint Committee on Powder Diffraction Standards

KeV

Kiloelectronvolt

LC50, LC90

Lethal concentration

NPs

Nanoparticles

ppm

Parts per million

RBC

Red blood cell

SD

Standard deviation

SEM

Scanning electron microscopy/microscope

SPR

Surface plasmon resonance

UV–vis

UV–visible

WHO

World Health Organization

XRD

X-ray diffraction

Notes

Acknowledgments

The authors are thankful for the financial support by King Saud University, Vice Deanship of Research Chairs.

References

  1. 1.
    James, A. A. (1992). Mosquito molecular genetics: The hands that feed bite back. Science, 257, 37–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Mehlhorn, H., Al-Rasheid, K. A., Al-Quraishy, S., & Abdel-Ghaffar, F. (2012). Research and increase of expertise in arachno-entomology are urgently needed. Parasitology Research, 110, 259–265.CrossRefPubMedGoogle Scholar
  3. 3.
    Mehlhorn, H. (2008). Encyclopedia of parasitology (3rd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
  4. 4.
    WHO. (2014). Malaria. Fact sheet N°94.Google Scholar
  5. 5.
    Siems, K. J., Mockenhaupt, F. P., Bienzle, U., Gupta, M. P., & Eich, E. (1999). In vitro antiplasmodial activity of Central American medicinal plants. Tropical Medicine and International Health, 4, 611–615.CrossRefGoogle Scholar
  6. 6.
    Bhat, P. G., & Surolia, N. (2001). In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. The American Journal of Tropical Medicine and Hygiene, 65, 304–308.CrossRefPubMedGoogle Scholar
  7. 7.
    Bagavan, A., Rahuman, A. A., Kamaraj, C., Kaushik, N. K., Mohanakrishnan, D., & Sahal, D. (2011). Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitology Research, 108, 1099–1109.CrossRefPubMedGoogle Scholar
  8. 8.
    Ibrahim, M. A., Aliyu, A. B., Sallau, A. B., Bashir, M., Yunusa, I., & Umar, T. S. (2010). Senna occidentalis leaf extract possesses antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacognosy Research, 2, 175–180.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Egharevba, O. H., Anselem, O. C., Abdullahi, M. S., Sabo, M., Okwute, K. S., & Okogun, I. J. (2010). Phytochemical analysis and broad spectrum antimicrobial activity of Cassia occidentalis L. (whole plant). New York Science Journal, 3, 74–81.Google Scholar
  10. 10.
    Yadava, R. N., & Satnami, D. K. (2011). Chemical constituents from Cassia occidentalis Linn. Indian Journal of Chemistry, 50B, 1112–1118.Google Scholar
  11. 11.
    Kuo, S. C., Chen, S. C., La, C. F., Teng, C. M., & Wang, J. P. (1996). Studies on the anti-inflammatory and antiplatelet activities of constituents isolated from the roots and stem of Cassia occidentalis L. Chinese Pharmaceutical Journal, 48, 291–302.Google Scholar
  12. 12.
    Tona, L., Cimanga, R. K., Mesia, K., Musuamba, C. T., De Bruyne, T., & Apers, S. (2004). In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. Journal of Ethnopharmacology, 93, 27–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Lal, J., & Gupta, P. C. (1974). Two new anthraquinones from the seeds of Cassia occidentalis. Experientia, 30, 850–851.CrossRefGoogle Scholar
  14. 14.
    Kudav, N. A, & Kulkarni, A. B. (1974). Chemical investigation of Cassia occidentalis. Indian Journal of Chemistry, 12, 1042–1044.Google Scholar
  15. 15.
    Haraguchi, M., Górniak, S. L., Dagli, M. L. Z., & Raspantini, P. C. F. (1996). Determinac¸ ão dos constituintes químicos das frac¸ ões tóxicas de fedegoso (Senna occidentalis L.). In: Proceedings of Annual Meeting of the Brazilian Chemical Society, Poc¸ os de Caldas, Brazil.Google Scholar
  16. 16.
    Haraguchi, M., Dagli, M. L. Z., Raspantini, P. C. F., & Górniak, S. L. (2003). The effects of low doses of Senna occidentalis seeds on broiler chickens. Veterinary Research Communication, 27, 321–328.CrossRefGoogle Scholar
  17. 17.
    Bian, G., Joshi, D., Dong, Y., Lu, P., Zhou, G., Pan, X., Xu, Y., Dimopoulos, G., & Xi, Z. (2013). Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science, 340, 748–751.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, S. E., Kim, J. E., & Lee, H. S. (2001). Insecticide resistance in increasing interest. Agricultural Chemistry and Biotechnology, 44, 105–112.Google Scholar
  19. 19.
    Becker, B. M., Cahill, J. D. (2010). Parasitic infections. In: J. A. Marx (Ed.), Rosen’s emergency medicine (Vol. 2(7), pp. 1752–1759). Philadelphia: Elsevier.Google Scholar
  20. 20.
    Rao, G. V. R., Wightman, J. A., & Ranga Rao, D. V. (1993). World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Science and Application, 14, 273–284.Google Scholar
  21. 21.
    Murali Krishna, T., Devaki, K., Raja Reddy, K., & Venkateswarlu, U. (2008). Efficacy of certain new insecticide molecules against groundnut defoliator, Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Current Biotica, 2(2), 173–180.Google Scholar
  22. 22.
    Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanbiotechnology, 6, 1–6.Google Scholar
  23. 23.
    Dias, A. M. G. C., Hussain, A., Marcos, A. S., & Roque, A. A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 29, 142–155.CrossRefPubMedGoogle Scholar
  24. 24.
    Goodsell, D. S. (2004). Bionanotechnology: Lessons from nature. Hoboken: Wiley.CrossRefGoogle Scholar
  25. 25.
    Awwad, A. M., & Nidà, M. (2012). Green synthesis of silver nanoparticles by mulberry leaves extract. Nanoscience and Nanotechnology, 2, 125–128.CrossRefGoogle Scholar
  26. 26.
    Geoprincy, G., Saravanan, P., NagendraGandhi, N., & Renganathan, S. (2011). A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method. Digest Journal of Nanomaterials and Biostructures, 6, 1557–1565.Google Scholar
  27. 27.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefPubMedGoogle Scholar
  28. 28.
    Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extract. Bioprocess and Biosystems Engineering, 32, 79–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., & Hwang, J. S. (2013). Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitology Research, 112, 981–990.CrossRefPubMedGoogle Scholar
  30. 30.
    Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Nicoletti, M., Jiang, W., Benelli, G., Chandramohan, B., & Suresh, U. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research, 114, 1519–1529.CrossRefPubMedGoogle Scholar
  31. 31.
    Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., Mahesh Kumar, P., Subramaniam, J., Dinesh, D., & Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 114, 1551–1562.CrossRefPubMedGoogle Scholar
  32. 32.
    Murugan, K., Benelli, G., Suganya, A., Dinesh, D., Panneerselvam, C., Nicoletti, M., Hwang, J. S., Mahesh Kumar, P., Subramaniam, J., & Suresh, U. (2015). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Research. doi:10.1007/s00436-015-4417-z.Google Scholar
  33. 33.
    Murugan, K., Benelli, G., Panneerselvam, C., Subramaniam, J., Jeyalalitha, T., Dinesh, D., Nicoletti, M., Hwang, J. S., Suresh, U., & Madhiyazhagan, P. (2015). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 153, 129–138.Google Scholar
  34. 34.
    Sastry, M., Patil, V., & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. The Journal of Physical Chemistry B, 102, 1404–1410.CrossRefGoogle Scholar
  35. 35.
    Shrivastava, S., & Dash, D. (2010). Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Letters, 2, 164–168.CrossRefGoogle Scholar
  36. 36.
    Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8, 39.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., & Farahani, F. (2011). Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules, 16, 6667–6676.CrossRefPubMedGoogle Scholar
  38. 38.
    Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2014). Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. International Journal of Metals, 1–8.Google Scholar
  39. 39.
    Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surface B Biointerfaces, 76, 50–56.CrossRefGoogle Scholar
  40. 40.
    Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 18, 285604.CrossRefGoogle Scholar
  41. 41.
    Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., & Ibrahim, N. A. (2010). Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. International Journal of Nanomedicine, 5, 743–751.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., & Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surface A: Physicochemical and Engineering Aspects, 348, 212–216.CrossRefGoogle Scholar
  43. 43.
    Dubey, M., Bhadauria, S., & Kushwah, B. S. (2009). Green Synthesis of nanosilver particles from extract of Eucalyptus Hybrida (Safeda) Leaf. Digest Journal of Nanomaterials and Biostructures, 4(3), 537–543.Google Scholar
  44. 44.
    Cho, K., Park, J., Osaka, T., & Park, S. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51, 956–960.CrossRefGoogle Scholar
  45. 45.
    Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Khatak, J., Thyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology, 19(7), 075103.CrossRefPubMedGoogle Scholar
  46. 46.
    Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 1–11.Google Scholar
  47. 47.
    Sathyavathi, R., Balamurali Krishna, M., Venugopal Rao, S., Saritha, R., & Narayana Rao, D. (2010). Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Advanced Science Letters, 3, 1–6.CrossRefGoogle Scholar
  48. 48.
    MacCuspie, R. I., Rogers, K., Patra, M., Suo, Z., Allen, A. J., & Martin, M. N. (2011). Toxicity testing of nanomaterials. Journal of Environmental Monitoring, 13, 1212–1226.CrossRefPubMedGoogle Scholar
  49. 49.
    Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surface B: Biointerfaces, 79(2), 488–493.CrossRefGoogle Scholar
  50. 50.
    Kumar, V., Yadav, S. C., & Yadav, S. K. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology and Biotechnology, 85, 1301–1309.CrossRefGoogle Scholar
  51. 51.
    Chen, L., & Evans, J. R. (2009). Arched structures created by colloidal droplets as they dry. Langmuir, 25, 11299–11301.CrossRefPubMedGoogle Scholar
  52. 52.
    Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem Bark. Digest Journal of Nanomaterials and Biostructures, 5(2), 369–372.Google Scholar
  53. 53.
    Xu, H., & Käll, M. (2002). Morphology effects on the optical properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 4, 254–259.Google Scholar
  54. 54.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefPubMedGoogle Scholar
  55. 55.
    Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), e103–e109.CrossRefGoogle Scholar
  56. 56.
    Magudapatty, P., Gangopadhyayrans, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B, 299, 142–146.CrossRefGoogle Scholar
  57. 57.
    Larson, R. T., Lorch, J. M., Pridgeon, J. W., Becnel, J. J., Clarck, G. G., & Lan, Q. (2010). The biological activity of α-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. Journal of Medical Entomology, 47, 249–257.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Maheswaran, R., & Ignacimuthu, S. (2012). Anovel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitology Research, 110, 1801–1813.CrossRefPubMedGoogle Scholar
  59. 59.
    Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., & Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1(2), 124–129.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Murugan, K., & Jeyabalan, D. (1999). Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Current Science, 76, 631–633.Google Scholar
  61. 61.
    Rawani, A., Haldar, K. M., Ghosh, A., & Chandra, G. (2009). Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research, 105, 1411–1417.CrossRefPubMedGoogle Scholar
  62. 62.
    Rajakumar, G., & Rahuman, A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118, 196–203.CrossRefPubMedGoogle Scholar
  63. 63.
    Soni, N., & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research, 110(1), 175–184.CrossRefPubMedGoogle Scholar
  64. 64.
    Patil, C. D., Patil, S. V., Borase, H. P., Salunke, B. K., & Salunkhe, R. B. (2012). Larvicidal activity of silver nanoparticles synthesised using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 110, 1815–1822.CrossRefPubMedGoogle Scholar
  65. 65.
    Tiwari, D. K., & Behari, J. (2009). Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Advances in Biological Research, 3(3–4), 89–95.Google Scholar
  66. 66.
    Agalya Priyadarshini, K., Murugan, K., Panneerselvam, C., Ponarulselvam, S., Jiang-Shiou Hwang, & Nicoletti, M. (2012). Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 111, 997–1006.CrossRefGoogle Scholar
  67. 67.
    Kumar, N. A., Murugan, K., Rejeeth, C., Madhiyazhagan, P., & Barnard, D. R. (2012). Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne and Zoonotic Diseases, 12(3), 262–268.CrossRefGoogle Scholar
  68. 68.
    Gessler, M. C., Nkunya, M. H., Mwasumbi, L. B., Heinrich, M., & Tanner, M. (1994). Screening Tanzanian medicinal plants for antimalarial activity. Acta Tropica, 56(1), 65–77.CrossRefPubMedGoogle Scholar
  69. 69.
    Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, A., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacific Journal of Tropical Biomedicine, 574–580.Google Scholar
  70. 70.
    Panneerselvam, C., Ponarulselvam, S., & Murugan, K. (2011). Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Archives of Applied Science Research, 3(6), 208–217.Google Scholar
  71. 71.
    Ravikumar, S., Inbaneson, S. J., & Suganthi, P. (2012). In vitro antiplasmodial activity of ethanolic extracts of South Indian medicinal plants against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 180183.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • K. Murugan
    • 1
  • Chandrasekar Raman
    • 2
  • C. Panneerselvam
    • 1
  • P. Madhiyazhagan
    • 1
  • J. Subramanium
    • 1
  • D. Dinesh
    • 1
  • Jiang-Shiou Hwang
    • 3
  • Jiang Wei
    • 4
  • Mohamad Saleh AlSalhi
    • 5
  • S. Devanesan
    • 5
  1. 1.Department of ZoologyBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Biochemistry & Molecular BiophysicsKansas State UniversityManhattanUSA
  3. 3.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  4. 4.Department of Microbiology, College of Biological SciencesChina Agricultural UniversityBeijingChina
  5. 5.Department of Physics and Astronomy, Research Chair in Laser Diagnosis of CancerKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations